38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Dietary Exposure of Fathead Minnows to the Explosives TNT and RDX and to the Pesticide DDT using Contaminated Invertebrates

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Explosive compounds have been released into the environment during manufacturing, handling, and usage procedures. These compounds have been found to persist in the environment and potentially promote detrimental biological effects. The lack of research on bioaccumulation and bioconcentration and especially dietary transfer on aquatic life has resulted in challenges in assessing ecological risks. The objective of this study was to investigate the potential trophic transfer of the explosive compounds 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) using a realistic freshwater prey/predator model and using dichlorodiphenyltrichloroethane (DDT), a highly bioaccumulative compound, to establish relative dietary uptake potential. The oligochaete worm Lumbriculus variegatus was exposed to 14C-labeled TNT, RDX or DDT for 5 hours in water, frozen in meal-size packages and subsequently fed to individual juvenile fathead minnows ( Pimephales promelas). Fish were sampled for body residue determination on days 1, 2, 3, 4, 7, and 14 following an 8-hour gut purging period. Extensive metabolism of the parent compound in worms occurred for TNT but not for RDX and DDT. Fish body residue remained relatively unchanged over time for TNT and RDX, but did not approach steady-state concentration for DDT during the exposure period. The bioaccumulation factor (concentration in fish relative to concentration in worms) was 0.018, 0.010, and 0.422 g/g for TNT, RDX and DDT, respectively, confirming the expected relatively low bioaccumulative potential for TNT and RDX through the dietary route. The experimental design was deemed successful in determining the potential for trophic transfer of organic contaminants via a realistic predator/prey exposure scenario.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Development of marine toxicity data for ordnance compounds.

          A toxicity database for ordnance compounds was generated using eight compounds of concern and marine toxicity tests with five species from different phyla. Toxicity tests and endpoints included fertilization success and embryological development with the sea urchin Arbacia punctulata; zoospore germination, germling length, and cell number with the green macroalga Ulva fasciata; survival and reproductive success of the polychaete Dinophilus gyrociliatus; larvae hatching and survival with the redfish Sciaenops ocellatus; and survival of juveniles of the opossum shrimp Americamysis bahia (formerly Mysidopsis bahia). The studied ordnance compounds were 2,4- and 2,6-dinitrotoluene, 2,4,6-trinitrotoluene, 1,3-dinitrobenzene, 1,3,5-trinitrobenzene, 2,4,6-trinitrophenylmethylnitramine (tetryl), 2,4,6-trinitrophenol (picric acid), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). The most sensitive toxicity test endpoints overall were the macroalga zoospore germination and the polychaete reproduction tests. The most toxic ordnance compounds overall were tetryl and 1,3,5-trinitrobenzene. These were also the most degradable compounds, often being reduced to very low or below-detection levels at the end of the test exposure. Among the dinitro- and trinitrotoluenes and benzenes, toxicity tended to increase with the level of nitrogenation. Picric acid and RDX were the least toxic chemicals tested overall.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nitroaromatic munition compounds: environmental effects and screening values.

            Available data on the occurrence, transport, transformation, and toxicity of eight nitroaromatic munition compounds and their degradation products, TNT, TNB, DNB, DNA, 2-ADNT, RDX, HMX, and tetryl were used to identify potential fate in the environment and to calculate screening benchmarks or safe environmental levels for aquatic and terrestrial organisms. Results of monitoring studies revealed that some of these compounds persist at sites where they were produced or processed. Most of the compounds are present in soil, sediment, and surface water or groundwater at military sites. Soil adsorption coefficients indicate that these chemicals are only moderately adsorbed to soil and may leach to groundwater. Most of these compounds are transformed by abiotic or biotic mechanisms in environmental media. Primary transformation mechanisms involve photolysis (TNT, RDX, HMX, tetryl), hydrolysis (tetryl), and microbial degradation (TNT, TNB, DNB, DNA, 2-ADNT, and HMX). Microbial degradation for both nitro and nitramine aromatic compounds involves rapid reduction of nitro groups to amino groups, but further metabolism is slow. With the exception of DNB, complete mineralization did not usually occur under the conditions of the studies. RDX was resistant to microbial degradation. Available ecotoxicological data on acute and chronic studies with freshwater fish and invertebrates were summarized, and water quality criteria or ecotoxicological screening benchmarks were developed. Depending on the available data, criteria/benchmarks were calculated according to USEPA Tier I or Tier II guidelines. The munitions chemicals are moderately to highly toxic to freshwater organisms, with chronic screening values < 1 mg/L. For some chemicals, these low values are caused by inherent toxicity; in other cases, they result from the conservative methods used in the absence of data. For nonionic organic munitions chemicals, sediment quality benchmarks were calculated (based on Kow values and the final chronic value) according to USEPA guidelines. Available data indicate that none of the compounds is expected to bioconcentrate. In the same manner in which reference doses for humans are based on studies with laboratory animals, reference doses or screening benchmarks for wildlife may also be calculated by extrapolation among mammalian species. Chronic NOAELs for the compounds of interest were determined from available laboratory studies. Endpoints selected for wildlife species were those that diminish population growth or survival. Equivalent NOAELs for wildlife were calculated by scaling the test data on the basis of differences in body weight. Data on food and water intake for seven selected wildlife species--short-tailed shrew, white-footed mouse, meadow vole, cottontail rabbit, mink, red fox, and whitetail deer--were used to calculate NOAELs for oral intake. In the case of TNB, a comparison of toxicity data from studies conducted with both the white-footed mouse and the laboratory rat indicates that the white-footed mouse may be more resistant to the toxic effects of chemicals than the laboratory rat and may further indicate the lesser sensitivity of wildlife species to chemical insult. Chronic NOAEL values for the test species based on the laboratory studies indicate that, by the oral route of exposure, TNB and RDX are not highly toxic to mammalian species. However, as seen with TNB, values are less conservative when chronic studies are available or when studies were conducted with wildlife species. Insufficient data were located to calculate NOAELs for avian species. In the absence of criteria or guidelines for terrestrial plants, invertebrates, and soil heterotrophic processes, LOECs were used as screening benchmarks for effect levels in the environment. In most cases, too few data were available to derive a screening benchmark or to have a high degree of confidence in the benchmarks that were derived. (ABSTRACT TRUNCATED)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Relative contributions of aqueous and dietary uptake of hydrophobic chemicals to the body burden in juvenile rainbow trout.

              This study assessed the relative contributions of aqueous versus dietary uptake of three hydrophobic chemicals, 1,2, 4-trichlorobenzene (1,2,4-TCB), 1,2,3,4,5-pentachlorobenzene (PeCB), and 2,2',4,4',6,6'-hexachlorobiphenyl (HCBP). Juvenile rainbow trout (Oncorhynchus mykiss) were exposed separately to chemically spiked water and food for 4 days and 12 days, respectively. Chemical concentrations were measured in the food, water, and tissues, and this allowed calculation of uptake rate constants (k(1) from water exposure, k(d) from food exposure). The k(1) values for the three test chemicals were approximately five orders of magnitude greater than the k(d) values. Using these measured uptake rate constants, a simulation model was used to predict the relative aqueous versus dietary uptake when fish were exposed simultaneously to water and food contaminated with these hydrophobic chemicals. The model predicted for all three test chemicals that the two uptake routes would contribute equally to the chemical body burden in fish whenever the food:water chemical concentration ratio was near 10(5). However, using food:water chemical concentration ratios that might be expected in nature, the model predicted that gill uptake could account for over 98% of fish body burden for both 1,2,4-TCB and PeCB uptake (log K(ow) values of 3.98 and 5.03, respectively). For HCBP (log K(ow) of 7.55), the model predicted that the dietary uptake could contribute over 85% of the body burden. Thus, depending on the actual food:water chemical concentration ratio, aqueous uptake via the gills can predominate even when the chemicals have a log K(ow) value greater than 5.0. In addition, we confirmed that dietary uptake of hydrophobic xenobiotics increases with increasing log K(ow).
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                101238455
                International Journal of Environmental Research and Public Health
                Molecular Diversity Preservation International (MDPI)
                1661-7827
                1660-4601
                August 2005
                14 August 2005
                : 2
                : 2
                : 286-292
                Affiliations
                [1 ]U.S. Army Engineer Research and Development Center, Waterways Experiment Station, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA.
                Author notes
                [* ]Correspondence to Dr. Guilherme Lotufo. Email: guilherme.lotufo@ 123456erdc.usace.army.mil
                Article
                ijerph-02-00286
                3810632
                16705829
                6b21a61e-4100-4426-b16f-411ef442f79e
                © 2005 MDPI. All rights reserved.
                History
                : 10 January 2005
                : 10 April 2005
                Categories
                Article

                Public health
                trophic transfer,ddt,bioaccumulation,tnt,rdx
                Public health
                trophic transfer, ddt, bioaccumulation, tnt, rdx

                Comments

                Comment on this article