5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants

      , , ,
      Agronomy
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Silicon application can improve productivity outcomes for salt stressed plants. Here, we describe how strawberry plants respond to treatments including various combinations of salt stress and nano-silicon dioxide, and assess whether nano-silicon dioxide improves strawberry plant tolerance to salt stress. Strawberry plants were treated with salt (0, 25 or 50 mM NaCl), and the nano-silicon dioxide treatments were applied to the strawberry plants before (0, 50 and 100 mg L−1) or after (0 and 50 mg L−1) flowering. The salt stress treatments reduced plant biomass, chlorophyll content, and leaf relative water content (RWC) as expected. Relative to control (no NaCl) plants the salt treated plants had 10% lower membrane stability index (MSI), 81% greater proline content, and 54% greater cuticular transpiration; as well as increased canopy temperature and changes in the structure of the epicuticular wax layer. The plants treated with nano-silicon dioxide were better able to maintain epicuticular wax structure, chlorophyll content, and carotenoid content and accumulated less proline relative to plants treated only with salt and no nano-silicon dioxide. Analysis of scanning electron microscopic (SEM) images revealed that the salt treatments resulted in changes in epicuticular wax type and thickness, and that the application of nano-silicon dioxide suppressed the adverse effects of salinity on the epicuticular wax layer. Nano-silicon dioxide treated salt stressed plants had increased irregular (smoother) crystal wax deposits in their epicuticular layer. Together these observations indicate that application of nano-silicon dioxide can limit the adverse anatomical and biochemical changes related to salt stress impacts on strawberry plants and that this is, in part, associated with epicuticular wax deposition.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          Rapid determination of free proline for water-stress studies

          Plant and Soil, 39(1), 205-207
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Salt and drought stress signal transduction in plants.

            Salt and drought stress signal transduction consists of ionic and osmotic homeostasis signaling pathways, detoxification (i.e., damage control and repair) response pathways, and pathways for growth regulation. The ionic aspect of salt stress is signaled via the SOS pathway where a calcium-responsive SOS3-SOS2 protein kinase complex controls the expression and activity of ion transporters such as SOS1. Osmotic stress activates several protein kinases including mitogen-activated kinases, which may mediate osmotic homeostasis and/or detoxification responses. A number of phospholipid systems are activated by osmotic stress, generating a diverse array of messenger molecules, some of which may function upstream of the osmotic stress-activated protein kinases. Abscisic acid biosynthesis is regulated by osmotic stress at multiple steps. Both ABA-dependent and -independent osmotic stress signaling first modify constitutively expressed transcription factors, leading to the expression of early response transcriptional activators, which then activate downstream stress tolerance effector genes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              EFFECT OF NANOSCALE ZINC OXIDE PARTICLES ON THE GERMINATION, GROWTH AND YIELD OF PEANUT

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                ABSGGL
                Agronomy
                Agronomy
                MDPI AG
                2073-4395
                May 2019
                May 17 2019
                : 9
                : 5
                : 246
                Article
                10.3390/agronomy9050246
                6b302e44-9691-4966-a1bb-4ab6a988ebb6
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Quantitative & Systems biology,Biophysics
                Quantitative & Systems biology, Biophysics

                Comments

                Comment on this article