45
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT)-3 by thyroid oncogenic kinase RET/PTC

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          RET/PTC (rearranged in transformation/papillary thyroid carcinomas) gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation.

          Methods

          Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6). The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [ 3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay.

          Results

          In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma) that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma) without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET/PTC.

          Conclusion

          These findings led us to suggest that the PLD synergistically functions to activate the STAT3 signaling by interacting directly with the thyroid oncogenic kinase RET/PTC.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Stat3 as an oncogene.

          STATs are latent transcription factors that mediate cytokine- and growth factor-directed transcription. In many human cancers and transformed cell lines, Stat3 is persistently activated, and in cell culture, active Stat3 is either required for transformation, enhances transformation, or blocks apoptosis. We report that substitution of two cysteine residues within the C-terminal loop of the SH2 domain of Stat3 produces a molecule that dimerizes spontaneously, binds to DNA, and activates transcription. The Stat3-C molecule in immortalized fibroblasts causes cellular transformation scored by colony formation in soft agar and tumor formation in nude mice. Thus, the activated Stat3 molecule by itself can mediate cellular transformation and the experiments focus attention on the importance of constitutive Stat3 activation in human tumors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization.

            Activation of phospholipase D (PLD) is an important but poorly understood component of receptor-mediated signal transduction responses and regulated secretion. We recently reported the cloning of the human gene encoding PLD1; this enzyme has low basal activity and is activated by protein kinase C and the small GTP-binding proteins, ADP-ribosylation factor (ARF), Rho, Rac and Cdc42. Biochemical and cell biological studies suggest, however, that additional and distinct PLD activities exist in cells, so a search was carried out for novel mammalian genes related to PLD1. We have cloned the gene for a second PLD family member and characterized the protein product, which appears to be regulated differently from PLD1: PLD2 is constitutively active and may be modulated in vivo by inhibition. Unexpectedly, PLD2 localizes primarily to the plasma membrane, in contrast to PLD1 which localizes solely to peri-nuclear regions (the endoplasmic reticulum, Golgi apparatus and late endosomes), where PLD activity has been shown to promote ARF-mediated coated-vesicle formation. PLD2 provokes cortical reorganization and undergoes redistribution in serum-stimulated cells, suggesting that it may have a role in signal-induced cytoskeletal regulation and/or endocytosis. PLD2 is a newly identified mammalian PLD isoform with novel regulatory properties. Our findings suggest that regulated secretion and morphological reorganization, the two most frequently proposed biological roles for PLD, are likely to be effected separately by PLD1 and PLD2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A regulatory role for ARF6 in receptor-mediated endocytosis.

              Adenosine diphosphate-ribosylation factor 6 (ARF6), ARF6 mutants, and ARF1 were transiently expressed in Chinese hamster ovary cells, and the effects on receptor-mediated endocytosis were assessed. Overexpressed ARF6 localized to the cell periphery and led to a redistribution of transferrin receptors to the cell surface and a decrease in the rate of uptake of transferrin. Similar results were obtained when a mutant defective in guanosine triphosphate hydrolysis was expressed. Expression of a dominant negative mutant, ARF6(T27N), resulted in an intracellular distribution of transferrin receptors and an inhibition of transferrin recycling to the cell surface. In contrast, overexpression of ARF1 had little or no effect on these parameters of endocytosis.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2008
                23 May 2008
                : 8
                : 144
                Affiliations
                [1 ]Department of Pharmacology, College of Medicine, Chungnam National University, Daejeon, 301-131, South Korea
                [2 ]Department of Pathology, College of Medicine, Chungnam National University, Daejeon, South Korea
                [3 ]Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, South Korea
                [4 ]Department of Biochemistry, College of Medicine, Chungnam National University, Daejeon, South Korea
                [5 ]Infection Signaling Network Research Center, Research Institute for Medical Scineces, College of Medicine, Chungnam National University, Daejeon, South Korea
                Article
                1471-2407-8-144
                10.1186/1471-2407-8-144
                2412888
                18498667
                6b4eef70-4fc1-4c66-99f1-222a67305fcd
                Copyright © 2008 Kim et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 December 2007
                : 23 May 2008
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article