+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found
      Is Open Access

      Loop-mediated isothermal amplification (LAMP) – review and classification of methods for sequence-specific detection

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This comprehensive review provides a systematic classification and a comparative evaluation of current sequence-specific detection methods for LAMP.


          In the course of the last 20 years, isothermal nucleic acid amplification tests have emerged as an important diagnostic tool, not only for clinical applications, but also for food quality control and environmental monitoring. Loop-mediated isothermal amplification (LAMP) is well known for its robust and highly sensitive and specific amplification of target DNA, which is achieved by utilizing up to six primers. Moreover, LAMP excels through its isothermal and energy efficient amplification requirements, rendering it a prime candidate for low-cost diagnostics and analysis at the point of need. Recently, methods for sequence-specific detection have gained more importance because, unlike sequence-independent detection methods, they are highly specific towards the target DNA. In the last 13 years, a variety of sequence-specific methods have emerged, based on a very diverse range of sensing techniques, including optical, magnetic, piezoelectric, electrochemical and magnetoresistive sensing. To give structure to the diverse multitude of sequence-specific methods, we created a systematic classification and provide a critical comparative evaluation according to a catalogue of criteria (analytical performance, multiplexing, quantification and instrumental requirements). Fluorescence-based detection, making up half of the methods, can be processed on open platforms and satisfies all the criteria listed before. Instrumental requirements are discussed in terms of complexity, portability and fluidic cartridges. In addition, the technological readiness level and the kind of platform (open versus method-tailored) are evaluated, the latter playing an important role in the miniaturization and automation of operational process steps. We also observe an increase in the use of smartphone-integrated sensors to improve LAMP-based point-of-need testing. In summary, recent developments in methods for the sequence-specific detection of LAMP demonstrate high potential for many future applications.

          Related collections

          Most cited references184

          • Record: found
          • Abstract: found
          • Article: not found

          The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments.

          Currently, a lack of consensus exists on how best to perform and interpret quantitative real-time PCR (qPCR) experiments. The problem is exacerbated by a lack of sufficient experimental detail in many publications, which impedes a reader's ability to evaluate critically the quality of the results presented or to repeat the experiments. The Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guidelines target the reliability of results to help ensure the integrity of the scientific literature, promote consistency between laboratories, and increase experimental transparency. MIQE is a set of guidelines that describe the minimum information necessary for evaluating qPCR experiments. Included is a checklist to accompany the initial submission of a manuscript to the publisher. By providing all relevant experimental conditions and assay characteristics, reviewers can assess the validity of the protocols used. Full disclosure of all reagents, sequences, and analysis methods is necessary to enable other investigators to reproduce results. MIQE details should be published either in abbreviated form or as an online supplement. Following these guidelines will encourage better experimental practice, allowing more reliable and unequivocal interpretation of qPCR results.
            • Record: found
            • Abstract: found
            • Article: not found

            Loop-mediated isothermal amplification of DNA.

            T. Notomi (2000)
            We have developed a novel method, termed loop-mediated isothermal amplification (LAMP), that amplifies DNA with high specificity, efficiency and rapidity under isothermal conditions. This method employs a DNA polymerase and a set of four specially designed primers that recognize a total of six distinct sequences on the target DNA. An inner primer containing sequences of the sense and antisense strands of the target DNA initiates LAMP. The following strand displacement DNA synthesis primed by an outer primer releases a single-stranded DNA. This serves as template for DNA synthesis primed by the second inner and outer primers that hybridize to the other end of the target, which produces a stem-loop DNA structure. In subsequent LAMP cycling one inner primer hybridizes to the loop on the product and initiates displacement DNA synthesis, yielding the original stem-loop DNA and a new stem-loop DNA with a stem twice as long. The cycling reaction continues with accumulation of 10(9) copies of target in less than an hour. The final products are stem-loop DNAs with several inverted repeats of the target and cauliflower-like structures with multiple loops formed by annealing between alternately inverted repeats of the target in the same strand. Because LAMP recognizes the target by six distinct sequences initially and by four distinct sequences afterwards, it is expected to amplify the target sequence with high selectivity.
              • Record: found
              • Abstract: found
              • Article: not found

              Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation.

              The loop-mediated isothermal amplification (LAMP) is a novel nucleic acid amplification method that uses only one type of enzyme. One of the characteristics of the LAMP method is its ability to synthesize extremely large amount of DNA. Accordingly, a large amount of by-product, pyrophosphate ion, is produced, yielding white precipitate of magnesium pyrophosphate in the reaction mixture. Judging the presence or absence of this white precipitate allows easy distinction of whether nucleic acid was amplified by the LAMP method. Since an increase in the turbidity of the reaction mixture according to the production of precipitate correlates with the amount of DNA synthesized, real-time monitoring of the LAMP reaction was achieved by real-time measurement of turbidity. Copyright 2001 Academic Press.

                Author and article information

                (View ORCID Profile)
                (View ORCID Profile)
                Analytical Methods
                Anal. Methods
                Royal Society of Chemistry (RSC)
                February 13 2020
                : 12
                : 6
                : 717-746
                [1 ]Laboratory for MEMS Applications
                [2 ]IMTEK - Department of Microsystems Engineering
                [3 ]University of Freiburg
                [4 ]79110 Freiburg
                [5 ]Germany
                [6 ]Mast Diagnostica GmbH
                [7 ]23858 Reinfeld
                © 2020


                Self URI (article page): http://xlink.rsc.org/?DOI=C9AY02246E


                Comment on this article