24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ex vivo treatment of patient biopsies as a novel method to assess colorectal tumour response to the MEK1/2 inhibitor, Selumetinib

      research-article
      1 , 2 , 1 ,
      Scientific Reports
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Although an array of new therapeutics has emerged for the treatment of colorectal cancer, their use is significantly impacted by variability in patient response. Better pre-clinical models could substantially improve efficacy as it may allow stratification of patients into the correct treatment regime. Here we explore acute, ex vivo treatment of fresh, surgically resected human colorectal tumour biopsies as a novel pre-clinical model for identifying patient response to specific therapeutics. The MEK1/2 inhibitor, Selumetinib (AZD6244, ARRY-142886) was used as a tool compound. Firstly, we established an acute treatment protocol and demonstrated this protocol could differentiate phenotypic and pharmacodynamic responses to Selumetinib (0–3uM). We then used the protocol to evaluate Selumetinib response in tumours from 23 colon cancer patients. These studies revealed that the agent inhibited pERK1/2 phosphorylation in all tumours, caused a significant decrease in proliferation in 5/23 (22%) tumours, and that KRAS/BRAF mutant tumours were particularly sensitive to the anti-proliferative effects of the agent. These data are consistent with data from clinical trials of Selumetinib, suggesting that acute treatment of small tumour biopsies is worthy of further exploration as a pre-clinical model to evaluate colorectal cancer response to novel therapies.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Phase I pharmacokinetic and pharmacodynamic study of the oral, small-molecule mitogen-activated protein kinase kinase 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancers.

          To assess the tolerability, pharmacokinetics (PKs), and pharmacodynamics (PDs) of the mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor AZD6244 (ARRY-142886) in patients with advanced cancer. In part A, patients received escalating doses to determine the maximum-tolerated dose (MTD). In both parts, blood samples were collected to assess PK and PD parameters. In part B, patients were stratified by cancer type (melanoma v other) and randomly assigned to receive the MTD or 50% MTD. Biopsies were collected to determine inhibition of ERK phosphorylation, Ki-67 expression, and BRAF, KRAS, and NRAS mutations. Fifty-seven patients were enrolled. MTD in part A was 200 mg bid, but this dose was discontinued in part B because of toxicity. The 50% MTD (100 mg bid) was well tolerated. Rash was the most frequent and dose-limiting toxicity. Most other adverse events were grade 1 or 2. The PKs were less than dose proportional, with a median half-life of approximately 8 hours and inhibition of ERK phosphorylation in peripheral-blood mononuclear cells at all dose levels. Paired tumor biopsies demonstrated reduced ERK phosphorylation (geometric mean, 79%). Five of 20 patients demonstrated >or= 50% inhibition of Ki-67 expression, and RAF or RAS mutations were detected in 10 of 26 assessable tumor samples. Nine patients had stable disease (SD) for >or= 5 months, including two patients with SD for 19 (thyroid cancer) and 22 (uveal melanoma plus renal cancer) 28-day cycles. AZD6244 was well tolerated with target inhibition demonstrated at the recommended phase II dose. PK analyses supported twice-daily dosing. Prolonged SD was seen in a variety of advanced cancers. Phase II studies are ongoing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors.

            Predicting drug response in cancer patients remains a major challenge in the clinic. We have perfected an ex vivo, reproducible, rapid and personalized culture method to investigate antitumoral pharmacological properties that preserves the original cancer microenvironment. Response to signal transduction inhibitors in cancer is determined not only by properties of the drug target but also by mutations in other signaling molecules and the tumor microenvironment. As a proof of concept, we, therefore, focused on the PI3K/Akt signaling pathway, because it plays a prominent role in cancer and its activity is affected by epithelial-stromal interactions. Our results show that this culture model preserves tissue 3D architecture, cell viability, pathway activity, and global gene-expression profiles up to 5 days ex vivo. In addition, we show pathway modulation in tumor cells resulting from pharmacologic intervention in ex vivo culture. This technology may have a significant impact on patient selection for clinical trials and in predicting response to small-molecule inhibitor therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transcriptional pathway signatures predict MEK addiction and response to selumetinib (AZD6244).

              Selumetinib (AZD6244, ARRY-142886) is a selective, non-ATP-competitive inhibitor of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-1/2. The range of antitumor activity seen preclinically and in patients highlights the importance of identifying determinants of response to this drug. In large tumor cell panels of diverse lineage, we show that MEK inhibitor response does not have an absolute correlation with mutational or phospho-protein markers of BRAF/MEK, RAS, or phosphoinositide 3-kinase (PI3K) activity. We aimed to enhance predictivity by measuring pathway output through coregulated gene networks displaying differential mRNA expression exclusive to resistant cell subsets and correlated to mutational or dynamic pathway activity. We discovered an 18-gene signature enabling measurement of MEK functional output independent of tumor genotype. Where the MEK pathway is activated but the cells remain resistant to selumetinib, we identified a 13-gene signature that implicates the existence of compensatory signaling from RAS effectors other than PI3K. The ability of these signatures to stratify samples according to functional activation of MEK and/or selumetinib sensitivity was shown in multiple independent melanoma, colon, breast, and lung tumor cell lines and in xenograft models. Furthermore, we were able to measure these signatures in fixed archival melanoma tumor samples using a single RT-qPCR-based test and found intergene correlations and associations with genetic markers of pathway activity to be preserved. These signatures offer useful tools for the study of MEK biology and clinical application of MEK inhibitors, and the novel approaches taken may benefit other targeted therapies.
                Bookmark

                Author and article information

                Contributors
                Lesley.Stark@IGMM.ed.ac.uk
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 September 2017
                20 September 2017
                2017
                : 7
                : 12020
                Affiliations
                [1 ]Edinburgh Cancer Research Centre and MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Rd, Edinburgh, Scotland EH4 2XU UK
                [2 ]ISNI 0000 0001 0462 7212, GRID grid.1006.7, Northern Institute for Cancer Research, Newcastle University, ; Newcastle upon Tyne, NE2 4HH UK
                Article
                12222
                10.1038/s41598-017-12222-9
                5607258
                28931905
                6b8cdd6f-7613-418a-86e9-7b3d32d2d85c
                © The Author(s) 2017

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 2 May 2017
                : 6 September 2017
                Categories
                Article
                Custom metadata
                © The Author(s) 2017

                Uncategorized
                Uncategorized

                Comments

                Comment on this article