77
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The TRIM-NHL Protein LIN-41 Controls the Onset of Developmental Plasticity in Caenorhabditis elegans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mechanisms controlling cell fate determination and reprogramming are fundamental for development. A profound reprogramming, allowing the production of pluripotent cells in early embryos, takes place during the oocyte-to-embryo transition. To understand how the oocyte reprogramming potential is controlled, we sought Caenorhabditis elegans mutants in which embryonic transcription is initiated precociously in germ cells. This screen identified LIN-41, a TRIM-NHL protein and a component of the somatic heterochronic pathway, as a temporal regulator of pluripotency in the germline. We found that LIN-41 is expressed in the cytoplasm of developing oocytes, which, in lin-41 mutants, acquire pluripotent characteristics of embryonic cells and form teratomas. To understand LIN-41 function in the germline, we conducted structure-function studies. In contrast to other TRIM-NHL proteins, we found that LIN-41 is unlikely to function as an E3 ubiquitin ligase. Similar to other TRIM-NHL proteins, the somatic function of LIN-41 is thought to involve mRNA regulation. Surprisingly, we found that mutations predicted to disrupt the association of LIN-41 with mRNA, which otherwise compromise LIN-41 function in the heterochronic pathway in the soma, have only minor effects in the germline. Similarly, LIN-41-mediated repression of a key somatic mRNA target is dispensable for the germline function. Thus, LIN-41 appears to function in the germline and the soma via different molecular mechanisms. These studies provide the first insight into the mechanism inhibiting the onset of embryonic differentiation in developing oocytes, which is required to ensure a successful transition between generations.

          Author Summary

          Reprogramming into a naïve, pluripotent state during the oocyte-to-embryo transition is directed by the oocyte cytoplasm. To understand how this reprogramming is controlled, we searched for C. elegans mutants in which the activation of embryonic genome, a landmark event demarcating the switch from a germline- to embryo-specific transcription, is initiated precociously in germ cells. This screen identified a novel function for LIN-41, a member of the TRIM-NHL protein family, in preventing a premature onset of embryonic-like differentiation and teratoma formation in developing oocytes, thus ensuring a successful passage between generations. This is the first example of such a regulator in cells that are poised for embryonic development. Interestingly, the majority of molecular “roadblocks” to reprograming that have been identified so far are epigenetic regulators. However, we propose that, at least in germ cells, LIN-41-like regulators may fulfill an analogous role in the cytoplasm, which has possible implications for the generation of human pluripotent stem cells.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: not found
          • Article: not found

          Homeobox genes and axial patterning.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The RNA-binding protein repertoire of embryonic stem cells.

            RNA-binding proteins (RBPs) have essential roles in RNA-mediated gene regulation, and yet annotation of RBPs is limited mainly to those with known RNA-binding domains. To systematically identify the RBPs of embryonic stem cells (ESCs), we here employ interactome capture, which combines UV cross-linking of RBP to RNA in living cells, oligo(dT) capture and MS. From mouse ESCs (mESCs), we have defined 555 proteins constituting the mESC mRNA interactome, including 283 proteins not previously annotated as RBPs. Of these, 68 new RBP candidates are highly expressed in ESCs compared to differentiated cells, implicating a role in stem-cell physiology. Two well-known E3 ubiquitin ligases, Trim25 (also called Efp) and Trim71 (also called Lin41), are validated as RBPs, revealing a potential link between RNA biology and protein-modification pathways. Our study confirms and expands the atlas of RBPs, providing a useful resource for the study of the RNA-RBP network in stem cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genome-wide germline-enriched and sex-biased expression profiles in Caenorhabditis elegans.

              We performed a genome-wide analysis of gene expression in C. elegans to identify germline- and sex-regulated genes. Using mutants that cause defects in germ cell proliferation or gametogenesis, we identified sets of genes with germline-enriched expression in either hermaphrodites or males, or in both sexes. Additionally, we compared gene expression profiles between males and hermaphrodites lacking germline tissue to define genes with sex-biased expression in terminally differentiated somatic tissues. Cross-referencing hermaphrodite germline and somatic gene sets with in situ hybridization data demonstrates that the vast majority of these genes have appropriate spatial expression patterns. Additionally, we examined gene expression at multiple times during wild-type germline development to define temporal expression profiles for these genes. Sex- and germline-regulated genes have a non-random distribution in the genome, with especially strong biases for and against the X chromosome. Comparison with data from large-scale RNAi screens demonstrates that genes expressed in the oogenic germline display visible phenotypes more frequently than expected.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2014
                28 August 2014
                : 10
                : 8
                : e1004533
                Affiliations
                [1 ]Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
                [2 ]University of Basel, Basel, Switzerland
                [3 ]Swiss Institute of Bioinformatics, Basel, Switzerland
                University of Cambridge, United Kingdom
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CT RC. Performed the experiments: CT JJK SBM SF. Analyzed the data: CT SF HG MBS RC. Contributed reagents/materials/analysis tools: CT JJK SBM SF HG MBS. Wrote the paper: CT HG MBS RC.

                Article
                PGENETICS-D-14-00411
                10.1371/journal.pgen.1004533
                4148191
                25167051
                6b9d5a9c-df0d-4bf9-919b-6c06d8112031
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 February 2014
                : 11 June 2014
                Page count
                Pages: 13
                Funding
                This work was partly sponsored by a Swiss National Science Foundation (SNF) grant to RC (grant number 31003A_149402; http://www.snf.ch/). The Friedrich Miescher Institute is supported by the Novartis Research Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Cell Biology
                Cellular Types
                Animal Cells
                Stem Cells
                Cell Potency
                Developmental Biology
                Cell Fate Determination
                Genetics
                Gene Identification and Analysis
                Genetic Screens
                Research and Analysis Methods
                Model Organisms

                Genetics
                Genetics

                Comments

                Comment on this article