18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ferritin heavy chain is a negative regulator of ovarian cancer stem cell expansion and epithelial to mesenchymal transition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objectives

          Ferritin is the major intracellular iron storage protein essential for maintaining the cellular redox status. In recent years ferritin heavy chain (FHC) has been shown to be involved also in the control of cancer cell growth. Analysis of public microarray databases in ovarian cancer revealed a correlation between low FHC expression levels and shorter survival. To better understand the role of FHC in cancer, we have silenced the FHC gene in SKOV3 cells.

          Results

          FHC-KO significantly enhanced cell viability and induced a more aggressive behaviour. FHC-silenced cells showed increased ability to form 3D spheroids and enhanced expression of NANOG, OCT4, ALDH and Vimentin. These features were accompanied by augmented expression of SCD1, a major lipid metabolism enzyme. FHC apparently orchestrates part of these changes by regulating a network of miRNAs.

          Methods

          FHC-silenced and control shScr SKOV3 cells were monitored for changes in proliferation, migration, ability to propagate as 3D spheroids and for the expression of stem cell and epithelial-to-mesenchymal-transition (EMT) markers. The expression of three miRNAs relevant to spheroid formation or EMT was assessed by q-PCR.

          Conclusions

          In this paper we uncover a new function of FHC in the control of cancer stem cells.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Aldehyde dehydrogenase 1A1 in stem cells and cancer

          The human genome contains 19 putatively functional aldehyde dehydrogenase (ALDH) genes, which encode enzymes critical for detoxification of endogenous and exogenous aldehyde substrates through NAD(P)+-dependent oxidation. ALDH1 has three main isotypes, ALDH1A1, ALDH1A2, and ALDH1A3, and is a marker of normal tissue stem cells (SC) and cancer stem cells (CSC), where it is involved in self-renewal, differentiation and self-protection. Experiments with murine and human cells indicate that ALDH1 activity, predominantly attributed to isotype ALDH1A1, is tissue- and cancer-specific. High ALDH1 activity and ALDH1A1 overexpression are associated with poor cancer prognosis, though high ALDH1 and ALDH1A1 levels do not always correlate with highly malignant phenotypes and poor clinical outcome. In cancer therapy, ALDH1A1 provides a useful therapeutic CSC target in tissue types that normally do not express high levels of ALDH1A1, including breast, lung, esophagus, colon and stomach. Here we review the functions and mechanisms of ALDH1A1, the key ALDH isozyme linked to SC populations and an important contributor to CSC function in cancers, and we outline its potential in future anticancer strategies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cancer stem cells and self-renewal.

            The cancer stem cell (CSC) or cancer-initiating cancer (C-IC) model has garnered considerable attention over the past several years since Dick and colleagues published a seminal report showing that a hierarchy exists among leukemic cells. In more recent years, a similar hierarchical organization, at the apex of which exists the CSC, has been identified in a variety of solid tumors. Human CSCs are defined by their ability to: (i) generate a xenograft that histologically resembles the parent tumor from which it was derived, (ii) be serially transplanted in a xenograft assay thereby showing the ability to self-renew (regenerate), and (iii) generate daughter cells that possess some proliferative capacity but are unable to initiate or maintain the cancer because they lack intrinsic regenerative potential. The emerging complexity of the CSC phenotype and function is at times daunting and has led to some confusion in the field. However, at its core, the CSC model is about identifying and characterizing the cancer cells that possess the greatest capacity to regenerate all aspects of the tumor. It is becoming clear that cancer cells evolve as a result of their ability to hijack normal self-renewal pathways, a process that can drive malignant transformation. Studying self-renewal in the context of cancer and CSC maintenance will lead to a better understanding of the mechanisms driving tumor growth. This review will address some of the main controversies in the CSC field and emphasize the importance of focusing first and foremost on the defining feature of CSCs: dysregulated self-renewal capacity. (c) 2010 AACR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species.

              During inflammation, NF-kappaB transcription factors antagonize apoptosis induced by tumor necrosis factor (TNF)alpha. This antiapoptotic activity of NF-kappaB involves suppressing the accumulation of reactive oxygen species (ROS) and controlling the activation of the c-Jun N-terminal kinase (JNK) cascade. However, the mechanism(s) by which NF-kappaB inhibits ROS accumulation is unclear. We identify ferritin heavy chain (FHC)--the primary iron storage factor--as an essential mediator of the antioxidant and protective activities of NF-kappaB. FHC is induced downstream of NF-kappaB and is required to prevent sustained JNK activation and, thereby, apoptosis triggered by TNFalpha. FHC-mediated inhibition of JNK signaling depends on suppressing ROS accumulation and is achieved through iron sequestration. These findings establish a basis for the NF-kappaB-mediated control of ROS induction and identify a mechanism by which NF-kappaB suppresses proapoptotic JNK signaling. Our results suggest modulation of FHC or, more broadly, of iron metabolism as a potential approach for anti-inflammatory therapy.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 September 2016
                22 August 2016
                : 7
                : 38
                : 62019-62033
                Affiliations
                1 Centro di Ricerca di Biochimica e Biologia Molecolare Avanzata, Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Graecia”, Catanzaro, Italy
                2 Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Italy
                3 Laboratorio di Biologia Cellulare e Molecolare, Dipartimento di Chirurgia “P. Valdoni”, Sapienza Università di Roma, Italy
                4 Faculty of Pharmacy, University of Ljubljana, Slovenia
                5 Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi “Magna Graecia”, Catanzaro, Italy
                6 Centro Interdipartimentale di Servizi e Ricerca, Università degli Studi “Magna Graecia”, Catanzaro, Italy
                7 Istituto Nazionale per lo Studio e la Cura dei Tumori “Fondazione G. Pascale”, Napoli, Italy
                Author notes
                Correspondence to: Gennaro Ciliberto, g.ciliberto@ 123456istitutotumori.na.it
                Article
                11495
                10.18632/oncotarget.11495
                5308708
                27566559
                6b9e927a-3f81-4492-9852-0abed29ed5aa
                Copyright: © 2016 Lobello et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 28 February 2016
                : 9 August 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                ferritin heavy chain,ovarian cancer,cancer stem cells,emt,mirnas
                Oncology & Radiotherapy
                ferritin heavy chain, ovarian cancer, cancer stem cells, emt, mirnas

                Comments

                Comment on this article