Blog
About

9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EEG in the classroom: Synchronised neural recordings during video presentation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We performed simultaneous recordings of electroencephalography (EEG) from multiple students in a classroom, and measured the inter-subject correlation (ISC) of activity evoked by a common video stimulus. The neural reliability, as quantified by ISC, has been linked to engagement and attentional modulation in earlier studies that used high-grade equipment in laboratory settings. Here we reproduce many of the results from these studies using portable low-cost equipment, focusing on the robustness of using ISC for subjects experiencing naturalistic stimuli. The present data shows that stimulus-evoked neural responses, known to be modulated by attention, can be tracked for groups of students with synchronized EEG acquisition. This is a step towards real-time inference of engagement in the classroom.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Canonical correlation analysis: an overview with application to learning methods.

          We present a general method using kernel canonical correlation analysis to learn a semantic representation to web images and their associated text. The semantic space provides a common representation and enables a comparison between the text and images. In the experiments, we look at two approaches of retrieving images based on only their content from a text query. We compare orthogonalization approaches against a standard cross-representation retrieval technique known as the generalized vector space model.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the interpretation of weight vectors of linear models in multivariate neuroimaging.

            The increase in spatiotemporal resolution of neuroimaging devices is accompanied by a trend towards more powerful multivariate analysis methods. Often it is desired to interpret the outcome of these methods with respect to the cognitive processes under study. Here we discuss which methods allow for such interpretations, and provide guidelines for choosing an appropriate analysis for a given experimental goal: For a surgeon who needs to decide where to remove brain tissue it is most important to determine the origin of cognitive functions and associated neural processes. In contrast, when communicating with paralyzed or comatose patients via brain-computer interfaces, it is most important to accurately extract the neural processes specific to a certain mental state. These equally important but complementary objectives require different analysis methods. Determining the origin of neural processes in time or space from the parameters of a data-driven model requires what we call a forward model of the data; such a model explains how the measured data was generated from the neural sources. Examples are general linear models (GLMs). Methods for the extraction of neural information from data can be considered as backward models, as they attempt to reverse the data generating process. Examples are multivariate classifiers. Here we demonstrate that the parameters of forward models are neurophysiologically interpretable in the sense that significant nonzero weights are only observed at channels the activity of which is related to the brain process under study. In contrast, the interpretation of backward model parameters can lead to wrong conclusions regarding the spatial or temporal origin of the neural signals of interest, since significant nonzero weights may also be observed at channels the activity of which is statistically independent of the brain process under study. As a remedy for the linear case, we propose a procedure for transforming backward models into forward models. This procedure enables the neurophysiological interpretation of the parameters of linear backward models. We hope that this work raises awareness for an often encountered problem and provides a theoretical basis for conducting better interpretable multivariate neuroimaging analyses. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recipes for the linear analysis of EEG.

              In this paper, we describe a simple set of "recipes" for the analysis of high spatial density EEG. We focus on a linear integration of multiple channels for extracting individual components without making any spatial or anatomical modeling assumptions, instead requiring particular statistical properties such as maximum difference, maximum power, or statistical independence. We demonstrate how corresponding algorithms, for example, linear discriminant analysis, principal component analysis and independent component analysis, can be used to remove eye-motion artifacts, extract strong evoked responses, and decompose temporally overlapping components. The general approach is shown to be consistent with the underlying physics of EEG, which specifies a linear mixing model of the underlying neural and non-neural current sources.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                07 March 2017
                2017
                : 7
                Affiliations
                [1 ]Technical University of Denmark, DTU Compute , Kgs. Lyngby, Denmark
                [2 ]Stanford University, Department of Psychology , Palo Alto, USA
                [3 ]City College of New York, Department of Biomedical Engineering , New York, USA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep43916
                10.1038/srep43916
                5339684
                28266588
                Copyright © 2017, The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article