8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predicting liver SBRT eligibility and plan quality for VMAT and 4π plans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          It is useful to predict planned dosimetry and determine the eligibility of a liver cancer patient for SBRT treatment using knowledge based planning (KBP). We compare the predictive accuracy using the overlap volume histogram (OVH) and statistical voxel dose learning (SVDL) KBP prediction models for coplanar VMAT to non-coplanar 4π radiotherapy plans.

          Methods

          In this study, 21 liver SBRT cases were selected, which were initially treated using coplanar VMAT plans. They were then re-planned using 4π IMRT plans with 20 inversely optimized non-coplanar beams. OVH was calculated by expanding the planning target volume (PTV) and then plotting the percent overlap volume v with the liver vs. r v , the expansion distance. SVDL calculated the distance to the PTV for all liver voxels and bins the voxels of the same distance. Their dose information is approximated by either taking the median or using a skew-normal or non-parametric fit, which was then applied to voxels of unknown dose for each patient in a leave-one-out test. The liver volume receiving less than 15 Gy (V <15Gy), DVHs, and 3D dose distributions were predicted and compared between the prediction models and planning methods.

          Results

          On average, V <15Gy was predicted within 5%. SVDL was more accurate than OVH and able to predict DVH and 3D dose distributions. Median SVDL yielded predictive errors similar or lower than the fitting methods and is more computationally efficient. Prediction of the 4π dose was more accurate compared to VMAT for all prediction methods, with significant ( p < 0.05) results except for OVH predicting liver V <15Gy ( p = 0.063).

          Conclusions

          In addition to evaluating plan quality, KBP is useful to automatically determine the patient eligibility for liver SBRT and quantify the dosimetric gains from non-coplanar 4π plans. The two here analyzed dose prediction methods performed more accurately for the 4π plans than VMAT.

          Related collections

          Most cited references18

          • Record: found
          • Abstract: found
          • Article: not found

          Predicting dose-volume histograms for organs-at-risk in IMRT planning.

          The objective of this work was to develop a quality control (QC) tool to reduce intensity modulated radiotherapy (IMRT) planning variability and improve treatment plan quality using mathematical models that predict achievable organ-at-risk (OAR) dose-volume histograms (DVHs) based on individual patient anatomy. A mathematical framework to predict achievable OAR DVHs was derived based on the correlation of expected dose to the minimum distance from a voxel to the PTV surface. OAR voxels sharing a range of minimum distances were computed as subvolumes. A three-parameter, skew-normal probability distribution was used to fit subvolume dose distributions, and DVH prediction models were developed by fitting the evolution of the skew-normal parameters as a function of distance with polynomials. Cohorts of 20 prostate and 24 head-and-neck IMRT plans with identical clinical objectives were used to train organ-specific average models for rectum, bladder, and parotids. A sum of residuals analysis quantifying the integrated difference between the clinically approved DVH and predicted DVH evaluated similarity between DVHs. The ability of the average models to prospectively predict DVHs was evaluated on an independent validation cohort of 20 prostate plans. Statistical comparison of the sums of residuals between training and validation cohorts quantified the accuracy of the average model. Restricted sums of residuals (RSR) were used to identify potential outliers, where large values of RSR indicate a clinical DVH that exceeds the predicted DVH by a considerable amount. A refined model was obtained for each organ by excluding outliers with large RSR values from the training cohort. The refined model was applied to the original training cohort and restricted sums of residuals were utilized to estimate potential DVH improvements. All cases were replanned and evaluated by the physician that approved the original plan. The ability of the refined models to correctly identify outliers was assessed using the residual sum between the original and replanned DVHs to quantify dosimetric gains realized under replanning. Statistical analysis of average sum of residuals for rectum (SR(rectum)=0.003±0.037), bladder (SR(bladder)=-0.008±0.037), and parotid (SR(parotid)=-0.003±0.060) training cohorts yielded mean values near zero and small with respect to the standard deviations, indicating that the average models are capturing the essential behavior of the training cohorts. The predictive abilities of the average rectum and bladder models were statistically indistinguishable between the training and validation sets, with SR(rectum)=0.002±0.044 and SR(bladder)=-0.018±0.058 for the validation set. The refined models' ability to detect outliers and predict achievable OAR DVHs was demonstrated by a strong correlation between predicted gains (RSR) and realized gains after replanning with sample correlation coefficients of r = 0.92 for the rectum, r = 0.88 for the bladder, and r = 0.84 for the parotid glands. The results demonstrate that our mathematical framework and modest training cohorts successfully predict achievable OAR DVHs based on individual patient anatomy. The models correctly identified suboptimal plans that demonstrated further OAR sparing after replanning. This modeling technique requires no manual intervention except for appropriate selection of a training set with identical evaluation criteria. Clinical implementation is in progress to evaluate impact on real-time IMRT QC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantitative analysis of the factors which affect the interpatient organ-at-risk dose sparing variation in IMRT plans.

            The authors present an evidence-based approach to quantify the effects of an array of patient anatomical features of the planning target volumes (PTVs) and organs-at-risk (OARs) and their spatial relationships on the interpatient OAR dose sparing variation in intensity modulated radiation therapy (IMRT) plans by learning from a database of high-quality prior plans. The authors formulized the dependence of OAR dose volume histograms (DVHs) on patient anatomical factors into feature models which were learned from prior plans by a stepwise multiple regression method. IMRT plans for 64 prostate, 82 head-and-neck (HN) treatments were used to train the models. Two major groups of anatomical features were considered in this study: the volumetric information and the spatial information. The geometry of OARs relative to PTV is represented by the distance-to-target histogram, DTH. Important anatomical and dosimetric features were extracted from DTH and DVH by principal component analysis. The final models were tested by additional 24 prostate and 24 HN plans. Significant patient anatomical factors contributing to OAR dose sparing in prostate and HN IMRT plans have been analyzed and identified. They are: the median distance between OAR and PTV, the portion of OAR volume within an OAR specific distance range, and the volumetric factors: the fraction of OAR volume which overlaps with PTV and the portion of OAR volume outside the primary treatment field. Overall, the determination coefficients R(2) for predicting the first principal component score (PCS1) of the OAR DVH by the above factors are above 0.68 for all the OARs and they are more than 0.53 for predicting the second principal component score (PCS2) of the OAR DVHs except brainstem and spinal cord. Thus, the above set of anatomical features combined has captured significant portions of the DVH variations for the OARs in prostate and HN plans. To test how well these features capture the interpatient organ dose sparing variations in general, the DVHs and specific dose-volume indices calculated from the regression models were compared with the actual DVHs and dose-volume indices from each patient's plan in the validation dataset. The dose-volume indices compared were V99%, V85%, and V50% for bladder and rectum in prostate plans and parotids median dose in HN plans. The authors found that for the bladder and rectum models, 17 out of 24 plans (71%) were within 6% OAR volume error and 21 plans (85%) were within 10% error; For the parotids model, the median dose values for 30 parotids out of 48 (63%) were within 6% prescription dose error and the values in 40 parotids (83%) were within 10% error. Quantitative analysis of patient anatomical features and their correlation with OAR dose sparing has identified a number of important factors that explain significant amount of interpatient DVH variations in OARs. These factors can be incorporated into evidence-based learning models as effective features to provide patient-specific OAR dose sparing goals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patient geometry-driven information retrieval for IMRT treatment plan quality control.

              Intensity modulated radiation therapy (IMRT) treatment plan quality depends on the planner's level of experience and the amount of time the planner invests in developing the plan. Planners often unwittingly accept plans when further sparing of the organs at risk (OARs) is possible. The authors propose a method of IMRT treatment plan quality control that helps planners to evaluate the doses of the OARs upon completion of a new plan. It is achieved by comparing the geometric configurations of the OARs and targets of a new patient with those of prior patients, whose plans are maintained in a database. They introduce the concept of a shape relationship descriptor and, specifically, the overlap volume histogram (OVH) to describe the spatial configuration of an OAR with respect to a target. The OVH provides a way to infer the likely DVHs of the OARs by comparing the relative spatial configurations between patients. A database of prior patients is built to serve as an external reference. At the conclusion of a new plan, planners search through the database and identify related patients by comparing the OAR-target geometric relationships of the new patient with those of prior patients. The treatment plans of these related patients are retrieved from the database and guide planners in determining whether lower doses delivered to the OARs in the new plan are feasible. Preliminary evaluation is promising. In this evaluation, they applied the analysis to the parotid DVHs of 32 prior head-and-neck patients, whose plans are maintained in a database. Each parotid was queried against the other 63 parotids to determine whether a lower dose was possible. The 17 parotids that promised the greatest reduction in D50 (DVH dose at 50% volume) were flagged. These 17 parotids came from 13 patients. The method also indicated that the doses of the other nine parotids of the 13 patients could not be reduced, so they were included in the replanning process as controls. Replanning with an effort to reduce D50 was conducted on these 26 parotids. After replanning, the average reductions for D50 of the 17 flagged parotids and nine unflagged parotids were 6.6 and 1.9 Gy, respectively. These results demonstrate that the quality control method has accurately identified not only the parotids that require dose reductions but also those for which dose reductions are marginal. Originally, 11 of out the 17 flagged parotids did not meet the Radiation Therapy Oncology Group sparing goal of V(30 Gy) < 50%. Replanning reduced them to three. Additionally, PTV coverage and OAR sparing of the original plans were compared to those of the replans by using pairwise Wilcoxon p test. The statistical comparisons show that replanning compromised neither PTV coverage nor OAR sparing. This method provides an effective quality control mechanism for evaluating the DVHs of the OARs. Adoption of such a method will advance the quality of current IMRT planning, providing better treatment plan consistency.
                Bookmark

                Author and article information

                Contributors
                angeliatran@mednet.ucla.edu
                kwoods@mednet.ucla.edu
                DanNguyen@mednet.ucla.edu
                vyu@mednet.ucla.edu
                tyniu@zju.edu.cn
                mcao@mednet.ucla.edu
                percylee@mednet.ucla.edu
                ksheng@mednet.ucla.edu
                Journal
                Radiat Oncol
                Radiat Oncol
                Radiation Oncology (London, England)
                BioMed Central (London )
                1748-717X
                24 April 2017
                24 April 2017
                2017
                : 12
                : 70
                Affiliations
                [1 ]ISNI 0000 0000 9632 6718, GRID grid.19006.3e, Department of Radiation Oncology, , University of California, ; 200 Medical Plaza, Suite B265, Los Angeles, CA 90095 USA
                [2 ]ISNI 0000 0004 1759 700X, GRID grid.13402.34, Translational Medicine Institute, , Zhejiang University, ; Zhejiang, China
                Article
                806
                10.1186/s13014-017-0806-z
                5404690
                28438215
                6bc4257e-c6dd-4be9-88db-de4b63e8f01c
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 May 2016
                : 12 April 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000002, National Institutes of Health;
                Award ID: R01CA188300
                Award ID: R43CA183390
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article