2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Lipopolysaccharide Recognition Mechanism Mediated by Internalization in Teleost Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages in teleosts are less sensitive to lipopolysaccharide (LPS) compared to mammals. The functional equivalent of the mammalian LPS surface receptor in teleost macrophages for the pro-inflammatory response is either non-existent or replaced by negative regulation. LPS signaling in teleost macrophages remains unclear. Here, we found a scavenger receptor class B 2a (PaSRB2a) that played a crucial role in LPS signaling in teleost macrophages. The internalization of LPS and subsequent pro-inflammatory responses in macrophages were mediated by PaSRB2a, which is a novel isoform of the mammalian SRB2 gene. LPS internalization by PaSRB2a is dependent on its C-terminal intracellular domain. Following LPS internalization, it interacts with the ayu intracellular receptors nucleotide-binding oligomerization domain protein 1 (PaNOD1) and PaNOD2. Moreover, LPS pre-stimulation with sub-threshold concentrations reduced the effect of secondary LPS treatment on pro-inflammatory responses that were mediated by PaSRB2a. The pro-inflammatory responses in LPS-treated ayu were down-regulated upon PaSRB2a knockdown by lentivirus siRNA delivery. In grass carp and spotted green pufferfish, SRB2a also mediated LPS internalization and pro-inflammatory responses. Our work identifies a novel LPS signaling pathway in teleosts that differs from those in mammals, and contributes to our understanding of the evolution of pathogen recognition in vertebrates.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Differential Roles of TLR2 and TLR4 in Recognition of Gram-Negative and Gram-Positive Bacterial Cell Wall Components

          Toll-like receptor (TLR) 2 and TLR4 are implicated in the recognition of various bacterial cell wall components, such as lipopolysaccharide (LPS). To investigate in vivo roles of TLR2, we generated TLR2-deficient mice. In contrast to LPS unresponsiveness in TLR4-deficient mice, TLR2-deficient mice responded to LPS to the same extent as wild-type mice. TLR2-deficient macrophages were hyporesponsive to several Gram-positive bacterial cell walls as well as Staphylococcus aureus peptidoglycan. TLR4-deficient macrophages lacked the response to Gram-positive lipoteichoic acids. These results demonstrate that TLR2 and TLR4 recognize different bacterial cell wall components in vivo and TLR2 plays a major role in Gram-positive bacterial recognition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lipopolysaccharide recognition: CD14, TLRs and the LPS-activation cluster.

            Recognition of bacterial lipopolysaccharide (LPS) by the innate immune system elicits strong pro-inflammatory responses that can eventually cause a fatal sepsis syndrome in humans. LPS-mediated activation of mammalian cells is believed to involve the interaction of LPS with lipopolysaccharide-binding protein (LBP) in the serum and, subsequently with CD14. Although there is no doubt that CD14 binds LPS, CD14 is not capable of initiating a transmembrane activation signal because it is a glycosylphosphatidylinositol (GPI)-anchored protein. Accumulating evidence has suggested that LPS must interact with a transmembrane receptor(s) that is responsible for signal transduction. Integrins CD11c and/or CD18, Toll-like receptors (TLRs), as well as CD55, have been suggested to serve this function. Recently, we have revealed that a signalling complex of receptors is formed following LPS stimulation, which comprises heat-shock proteins (Hsps) 70 and 90, chemokine receptor 4 (CXCR4) and growth differentiation factor 5 (GDF5). Taking into account the discovery of the TLRs and the LPS-activation cluster, we propose a new model of LPS recognition.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Function of Fish Cytokines

              What is known about the biological activity of fish cytokines is reviewed. Most of the functional studies performed to date have been in teleost fish, and have focused on the induced effects of cytokine recombinant proteins, or have used loss- and gain-of-function experiments in zebrafish. Such studies begin to tell us about the role of these molecules in the regulation of fish immune responses and whether they are similar or divergent to the well-characterised functions of mammalian cytokines. This knowledge will aid our ability to determine and modulate the pathways leading to protective immunity, to improve fish health in aquaculture.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                27 November 2018
                2018
                : 9
                : 2758
                Affiliations
                [1] 1Laboratory of Biochemistry and Molecular Biology, Ningbo University , Ningbo, China
                [2] 2Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University , Ningbo, China
                Author notes

                Edited by: Geert Wiegertjes, Wageningen University & Research, Netherlands

                Reviewed by: Magdalena Chadzinska, Jagiellonian University, Poland; Hai-peng Liu, Xiamen University, China

                *Correspondence: Xin-Jiang Lu lxj711043@ 123456163.com

                This article was submitted to Comparative Immunology, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2018.02758
                6277787
                6bc658d2-5e68-41f4-92bf-ab5b570c9291
                Copyright © 2018 Lu, Ning, Liu, Nie and Chen.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 August 2018
                : 09 November 2018
                Page count
                Figures: 12, Tables: 3, Equations: 0, References: 66, Pages: 18, Words: 11619
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 31772876
                Award ID: 41776151
                Funded by: Natural Science Foundation of Zhejiang Province 10.13039/501100004731
                Award ID: LZ18C190001
                Award ID: LR18C040001
                Categories
                Immunology
                Original Research

                Immunology
                teleost,macrophages,lipopolysaccharide,scavenger receptor class b2,inflammation
                Immunology
                teleost, macrophages, lipopolysaccharide, scavenger receptor class b2, inflammation

                Comments

                Comment on this article