22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Determination of Hemicellulose, Cellulose and Lignin in Moso Bamboo by Near Infrared Spectroscopy

      research-article
      1 , 1 , 1 , a , 1
      Scientific Reports
      Nature Publishing Group

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The contents of hemicellulose, cellulose and lignin are important for moso bamboo processing in biomass energy industry. The feasibility of using near infrared (NIR) spectroscopy for rapid determination of hemicellulose, cellulose and lignin was investigated in this study. Initially, the linear relationship between bamboo components and their NIR spectroscopy was established. Subsequently, successive projections algorithm (SPA) was used to detect characteristic wavelengths for establishing the convenient models. For hemicellulose, cellulose and lignin, 22, 22 and 20 characteristic wavelengths were obtained, respectively. Nonlinear determination models were subsequently built by an artificial neural network (ANN) and a least-squares support vector machine (LS-SVM) based on characteristic wavelengths. The LS-SVM models for predicting hemicellulose, cellulose and lignin all obtained excellent results with high determination coefficients of 0.921, 0.909 and 0.892 respectively. These results demonstrated that NIR spectroscopy combined with SPA-LS-SVM is a useful, nondestructive tool for the determinations of hemicellulose, cellulose and lignin in moso bamboo.

          Related collections

          Most cited references6

          • Record: found
          • Abstract: found
          • Article: not found

          Least-squares support vector machines and near infrared spectroscopy for quantification of common adulterants in powdered milk.

          This paper proposes the use of the least-squares support vector machine (LS-SVM) as an alternative multivariate calibration method for the simultaneous quantification of some common adulterants (starch, whey or sucrose) found in powdered milk samples, using near-infrared spectroscopy with direct measurements by diffuse reflectance. Due to the spectral differences of the three adulterants a nonlinear behavior is present when all groups of adulterants are in the same data set, making the use of linear methods such as partial least squares regression (PLSR) difficult. Excellent models were built using LS-SVM, with low prediction errors and superior performance in relation to PLSR. These results show it possible to built robust models to quantify some common adulterants in powdered milk using near-infrared spectroscopy and LS-SVM as a nonlinear multivariate calibration procedure.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses.

            Fourier transform infrared, attenuated total reflectance (FTIR-ATR) spectroscopy combined with partial least squares (PLS) regression accurately predicted 72-h glucose and xylose conversions (g sugars/100 g potential sugars) and yields (g sugars/100 g dry solids) from cellulase-mediated hydrolysis of alkali-pretreated lignocellulose. Six plant biomasses that represent a variety of potential biofuel feedstocks--two switchgrass cultivars, big bluestem grass, a low-impact, high-diversity mixture of 32 species of prairie biomasses, mixed hardwood, and corn stover--were subjected to four levels of low-temperature NaOH pretreatment to produce 24 samples with a wide range of potential digestibility. PLS models were constructed by correlating FTIR spectra of pretreated samples to measured values of gluose and xylose conversions and yields. Variable selection, based on 90% confidence intervals of regression-coefficient matrices, improved the predictive ability of the models, while simplifying them considerably. Final models predicted sugar conversions with coefficient of determination for cross-validation (Q(2)) values of 0.90 for glucose and 0.89 for xylose, and sugar yields with Q(2) values of 0.92 for glucose and 0.91 for xylose. The sugar-yield models are noteworthy for their ability to predict enzymatic saccharification per mass dry solids without a priori knowledge of the composition of the solids. All peaks retained in the final regression coefficient matrices were previously assigned to chemical bonds and functional groups in lignocellulose, demonstrating that the models were based on real chemical information. This study demonstrates that FTIR spectroscopy combined with PLS regression can be used to rapidly estimate sugar conversions and yields from enzymatic hydrolysis of pretreated plant biomass. Copyright © 2011 Wiley Periodicals, Inc.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Simultaneous data pre-processing and SVM classification model selection based on a parallel genetic algorithm applied to spectroscopic data of olive oils.

              Classification is an important task in chemometrics. For several years now, support vector machines (SVMs) have proven to be powerful for infrared spectral data classification. However such methods require optimisation of parameters in order to control the risk of overfitting and the complexity of the boundary. Furthermore, it is established that the prediction ability of classification models can be improved using pre-processing in order to remove unwanted variance in the spectra. In this paper we propose a new methodology based on genetic algorithm (GA) for the simultaneous optimisation of SVM parameters and pre-processing (GENOPT-SVM). The method has been tested for the discrimination of the geographical origin of Italian olive oil (Ligurian and non-Ligurian) on the basis of near infrared (NIR) or mid infrared (FTIR) spectra. Different classification models (PLS-DA, SVM with mean centre data, GENOPT-SVM) have been tested and statistically compared using McNemar's statistical test. For the two datasets, SVM with optimised pre-processing give models with higher accuracy than the one obtained with PLS-DA on pre-processed data. In the case of the NIR dataset, most of this accuracy improvement (86.3% compared with 82.8% for PLS-DA) occurred using only a single pre-processing step. For the FTIR dataset, three optimised pre-processing steps are required to obtain SVM model with significant accuracy improvement (82.2%) compared to the one obtained with PLS-DA (78.6%). Furthermore, this study demonstrates that even SVM models have to be developed on the basis of well-corrected spectral data in order to obtain higher classification rates. Copyright © 2013 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                25 November 2015
                2015
                : 5
                : 17210
                Affiliations
                [1 ]College of Biosystems Engineering and Food Science, Zhejiang University , 866 Yuhangtang Road, Hangzhou 310058, China
                Author notes
                Article
                srep17210
                10.1038/srep17210
                4658639
                26601657
                6bd17e04-8cb3-42be-9597-a83efd4a2f8b
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 26 June 2015
                : 26 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article