2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Increasing the Magnesium Concentration in Various Dialysate Solutions Differentially Modulates Oxidative Stress in a Human Monocyte Cell Line

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress is exacerbated in hemodialysis patients by several factors, including the uremic environment and the use of dialysis fluids (DFs). Since magnesium (Mg) plays a key role in modulating immune function and in reducing oxidative stress, we aimed to evaluate whether increasing the Mg concentration in different DFs could protect against oxidative stress in immunocompetent cells in vitro. Effect of ADF (acetate 3 mM), CDF (citrate 1 mM), and ACDF (citrate 0.8 mM + acetate 0.3 mM) dialysates with Mg at standard (0.5 mM) or higher (1, 1.25, and 2 mM) concentrations were assessed in THP-1 monocyte cultures. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were quantified under basal and uremic conditions (indoxyl sulfate (IS) treatment). Under uremic conditions, the three DFs with 0.5 mM Mg promoted higher ROS production and lipid damage than the control solution. However, CDF and ACDF induced lower levels of ROS and MDA, compared to that induced by ADF. High Mg concentration (1.25 and/or 2 mM) in CDF and ACDF protected against oxidative stress, indicated by reduced ROS and MDA levels compared to respective DFs with standard concentration of Mg. Increasing Mg concentrations in ADF promoted high ROS production and MDA content. Thus, an increase in Mg content in DFs has differential effects on the oxidative stress in IS-treated THP-1 cells depending on the dialysate used.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Serum indoxyl sulfate is associated with vascular disease and mortality in chronic kidney disease patients.

          As a major component of uremic syndrome, cardiovascular disease is largely responsible for the high mortality observed in chronic kidney disease (CKD). Preclinical studies have evidenced an association between serum levels of indoxyl sulfate (IS, a protein-bound uremic toxin) and vascular alterations. The aim of this study is to investigate the association between serum IS, vascular calcification, vascular stiffness, and mortality in a cohort of CKD patients. One-hundred and thirty-nine patients (mean +/- SD age: 67 +/- 12; 60% male) at different stages of CKD (8% at stage 2, 26.5% at stage 3, 26.5% at stage 4, 7% at stage 5, and 32% at stage 5D) were enrolled. Baseline IS levels presented an inverse relationship with renal function and a direct relationship with aortic calcification and pulse wave velocity. During the follow-up period (605 +/- 217 d), 25 patients died, mostly because of cardiovascular events (n = 18). In crude survival analyses, the highest IS tertile was a powerful predictor of overall and cardiovascular mortality (P = 0.001 and 0.012, respectively). The predictive power of IS for death was maintained after adjustment for age, gender, diabetes, albumin, hemoglobin, phosphate, and aortic calcification. The study presented here indicates that IS may have a significant role in the vascular disease and higher mortality observed in CKD patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader.

            Oxidative stress (OS) has been implicated in various degenerative diseases in aging. In an attempt to quantify OS in a cell model, we examined OS induced by incubating for 30 min with various free radical generators in PC12 cells by using the dichlorofluorescein (DCF) assay, modified for use by a fluorescent microplate reader. The nonfluorescent fluorescin derivatives (dichlorofluorescin, DCFH), after being oxidized by various oxidants, will become DCF and emit fluorescence. By quantifying the fluorescence, we were able to quantify the OS. Our results indicated that the fluorescence varied linearly with increasing concentrations (between 0.1 and 1 mM) of H2O2 and 2,2'-azobios(2-amidinopropane) dihydrochloride (AAPH; a peroxyl radical generator). By contrast, the fluorescence varied as a nonlinear response to increasing concentrations of 3-morpholinosydnonimine hydrochloride (SIN-1; a peroxynitrite generator), sodium nitroprusside (SNP; a nitric oxide generator), and dopamine. Dopamine had a biphasic effect; it decreased the DCF fluorescence, thus acting as an antioxidant, at concentrations <500 microM in cells, but acted as a pro-oxidant by increasing the fluorescence at 1 mM. While SNP was not a strong pro-oxidant, SIN-1 was the most potent pro-oxidant among those tested, inducing a 70 times increase of fluorescence at a concentration of 100 microM compared with control. Collectively, due to its indiscriminate nature to various free radicals, DCF can be very useful in quantifying overall OS in cells, especially when used in conjunction with a fluorescent microplate reader. This method is reliable and efficient for evaluating the potency of pro-oxidants and can be used to evaluate the efficacy of antioxidants against OS in cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Cardiovascular disease in dialysis patients

              Abstract Cardiovascular disease (CVD) is a highly common complication and the first cause of death in patients with end-stage renal disease (ESRD) on haemodialysis (HD). In this population, mortality due to CVD is 20 times higher than in the general population and the majority of maintenance HD patients have CVD. This is likely due to ventricular hypertrophy as well as non-traditional risk factors, such as chronic volume overload, anaemia, inflammation, oxidative stress, chronic kidney disease–mineral bone disorder and other aspects of the ‘uraemic milieu’. Better understanding the impact of these numerous factors on CVD would be an important step for prevention and treatment. In this review we focus non-traditional CVD risk factors in HD patients.
                Bookmark

                Author and article information

                Journal
                Antioxidants (Basel)
                Antioxidants (Basel)
                antioxidants
                Antioxidants
                MDPI
                2076-3921
                15 April 2020
                April 2020
                : 9
                : 4
                : 319
                Affiliations
                [1 ]Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
                [2 ]Departamento Genética, Fisiología y Microbiología (Sección Fisiología), Universidad Complutense de Madrid, 28040 Madrid, Spain
                [3 ]Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
                [4 ]Sección de Nefrología, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
                [5 ]Departamento de Medicina, Universidad Complutense de Madrid, 2804 Madrid, Spain
                [6 ]Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, Alcalá de Henares, 28805 Madrid, Spain
                [7 ]Instituto Ramón y Cajal de Investigación Sanitaria, (IRYCIS), 28034 Madrid, Spain
                Author notes
                [* ]Correspondence: julcar01@ 123456ucm.es (J.C.); matilde.alique@ 123456uah.es (M.A.)
                [†]

                These authors share senior authorship.

                Author information
                https://orcid.org/0000-0002-0942-8076
                https://orcid.org/0000-0002-8422-812X
                https://orcid.org/0000-0001-7783-8280
                https://orcid.org/0000-0002-7912-1133
                https://orcid.org/0000-0003-4598-339X
                Article
                antioxidants-09-00319
                10.3390/antiox9040319
                7222382
                32326605
                6bd41101-4b1f-47a1-94fd-5c268c00586a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 27 February 2020
                : 14 April 2020
                Categories
                Article

                chronic kidney disease,dialysates,lipid damage,magnesium,monocytes,oxidative stress,uremic toxins,reactive oxygen species

                Comments

                Comment on this article