58
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of the CO-RADS and the RSNA chest CT classification system concerning sensitivity and reliability for the diagnosis of COVID-19 pneumonia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The Radiological Society of North America (RSNA) recently published a chest CT classification system and Dutch Association for Radiology has announced Coronavirus disease 2019 (COVID-19) reporting and data system (CO-RADS) to provide guidelines to radiologists who interpret chest CT images of patients with suspected COVID-19 pneumonia. This study aimed to compare CO-RADS and RSNA classification with respect to their sensitivity and reliability for diagnosis of COVID-19 pneumonia.

          Results

          A retrospective study assessed consecutive CT chest imaging of 359 COVID-19-positive patients. Three experienced radiologists who were aware of the final diagnosis of all patients, independently categorized each patient according to CO-RADS and RSNA classification. RT-PCR test performed within one week of chest CT scan was used as a reference standard for calculating sensitivity of each system. Kappa statistics and intraclass correlation coefficient were used to assess reliability of each system. The study group included 359 patients (180 men, 179 women; mean age, 45 ± 16.9 years). Considering combination of CO-RADS 3, 4 and 5 and combination of typical and indeterminate RSNA categories as positive predictors for COVID-19 diagnosis, the overall sensitivity was the same for both classification systems (72.7%). Applying both systems in moderate and severe/critically ill patients resulted in a significant increase in sensitivity (94.7% and 97.8%, respectively). The overall inter-reviewer agreement was excellent for CO-RADS ( κ = 0.801), and good for RSNA classification ( κ = 0.781).

          Conclusion

          CO-RADS and RSNA chest CT classification systems are comparable in diagnosis of COVID-19 pneumonia with similar sensitivity and reliability.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          A Novel Coronavirus from Patients with Pneumonia in China, 2019

          Summary In December 2019, a cluster of patients with pneumonia of unknown cause was linked to a seafood wholesale market in Wuhan, China. A previously unknown betacoronavirus was discovered through the use of unbiased sequencing in samples from patients with pneumonia. Human airway epithelial cells were used to isolate a novel coronavirus, named 2019-nCoV, which formed a clade within the subgenus sarbecovirus, Orthocoronavirinae subfamily. Different from both MERS-CoV and SARS-CoV, 2019-nCoV is the seventh member of the family of coronaviruses that infect humans. Enhanced surveillance and further investigation are ongoing. (Funded by the National Key Research and Development Program of China and the National Major Project for Control and Prevention of Infectious Disease in China.)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR

            Background The ongoing outbreak of the recently emerged novel coronavirus (2019-nCoV) poses a challenge for public health laboratories as virus isolates are unavailable while there is growing evidence that the outbreak is more widespread than initially thought, and international spread through travellers does already occur. Aim We aimed to develop and deploy robust diagnostic methodology for use in public health laboratory settings without having virus material available. Methods Here we present a validated diagnostic workflow for 2019-nCoV, its design relying on close genetic relatedness of 2019-nCoV with SARS coronavirus, making use of synthetic nucleic acid technology. Results The workflow reliably detects 2019-nCoV, and further discriminates 2019-nCoV from SARS-CoV. Through coordination between academic and public laboratories, we confirmed assay exclusivity based on 297 original clinical specimens containing a full spectrum of human respiratory viruses. Control material is made available through European Virus Archive – Global (EVAg), a European Union infrastructure project. Conclusion The present study demonstrates the enormous response capacity achieved through coordination of academic and public laboratories in national and European research networks.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Correlation of Chest CT and RT-PCR Testing in Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases

              Background Chest CT is used for diagnosis of 2019 novel coronavirus disease (COVID-19), as an important complement to the reverse-transcription polymerase chain reaction (RT-PCR) tests. Purpose To investigate the diagnostic value and consistency of chest CT as compared with comparison to RT-PCR assay in COVID-19. Methods From January 6 to February 6, 2020, 1014 patients in Wuhan, China who underwent both chest CT and RT-PCR tests were included. With RT-PCR as reference standard, the performance of chest CT in diagnosing COVID-19 was assessed. Besides, for patients with multiple RT-PCR assays, the dynamic conversion of RT-PCR results (negative to positive, positive to negative, respectively) was analyzed as compared with serial chest CT scans for those with time-interval of 4 days or more. Results Of 1014 patients, 59% (601/1014) had positive RT-PCR results, and 88% (888/1014) had positive chest CT scans. The sensitivity of chest CT in suggesting COVID-19 was 97% (95%CI, 95-98%, 580/601 patients) based on positive RT-PCR results. In patients with negative RT-PCR results, 75% (308/413) had positive chest CT findings; of 308, 48% were considered as highly likely cases, with 33% as probable cases. By analysis of serial RT-PCR assays and CT scans, the mean interval time between the initial negative to positive RT-PCR results was 5.1 ± 1.5 days; the initial positive to subsequent negative RT-PCR result was 6.9 ± 2.3 days). 60% to 93% of cases had initial positive CT consistent with COVID-19 prior (or parallel) to the initial positive RT-PCR results. 42% (24/57) cases showed improvement in follow-up chest CT scans before the RT-PCR results turning negative. Conclusion Chest CT has a high sensitivity for diagnosis of COVID-19. Chest CT may be considered as a primary tool for the current COVID-19 detection in epidemic areas. A translation of this abstract in Farsi is available in the supplement. - ترجمه چکیده این مقاله به فارسی، در ضمیمه موجود است.
                Bookmark

                Author and article information

                Contributors
                Mohammad_basha76@yahoo.com
                Journal
                Insights Imaging
                Insights Imaging
                Insights into Imaging
                Springer International Publishing (Cham )
                1869-4101
                28 April 2021
                28 April 2021
                December 2021
                : 12
                : 55
                Affiliations
                [1 ]GRID grid.252487.e, ISNI 0000 0000 8632 679X, Department of Diagnostic Radiology, Faculty of Human Medicine, , Assiut University, ; Assiut, Egypt
                [2 ]GRID grid.31451.32, ISNI 0000 0001 2158 2757, Department of Diagnostic Radiology, Faculty of Human Medicine, , Zagazig University, ; Zagazig, Egypt
                [3 ]GRID grid.411660.4, ISNI 0000 0004 0621 2741, Department of Radio-diagnosis, Faculty of Human Medicine, , Benha University, ; Benha, Egypt
                [4 ]Department of Radio-diagnosis, Faculty of Human Medicine, Suiz Canal University, Esmaelia, Egypt
                [5 ]GRID grid.440879.6, ISNI 0000 0004 0578 4430, Department of Radio-diagnosis, Faculty of Human Medicine, , Port Said University, ; Port Said, Egypt
                [6 ]GRID grid.411831.e, ISNI 0000 0004 0398 1027, Department of Radiology, College of Medicine, , Jazan University, ; Jazan, Saudi Arabia
                Author information
                http://orcid.org/0000-0002-9075-8020
                Article
                998
                10.1186/s13244-021-00998-4
                8081002
                33913066
                6bd54da2-072d-4bfe-8c4e-614cc33e7777
                © The Author(s) 2021

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 28 January 2021
                : 9 April 2021
                Categories
                Original Article
                Custom metadata
                © The Author(s) 2021

                Radiology & Imaging
                covid-19,pneumonia,tomography (x-ray computed),reproducibility of results,retrospective studies

                Comments

                Comment on this article