8
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Drug Design, Development and Therapy (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the design and development of drugs, as well as the clinical outcomes, patient safety, and programs targeted at the effective and safe use of medicines. Sign up for email alerts here.

      88,007 Monthly downloads/views I 4.319 Impact Factor I 6.6 CiteScore I 1.12 Source Normalized Impact per Paper (SNIP) I 0.784 Scimago Journal & Country Rank (SJR)

       

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Stable and Reactive Metabolites of the Anticancer Drug, Ensartinib, in Human Liver Microsomes Using LC-MS/MS: An in silico and Practical Bioactivation Approach

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Ensartinib (ESB) is a novel anaplastic lymphoma kinase inhibitor (ALK) with additional activity against Abelson murine leukemia (ABL), met proto-oncogene (MET), receptor tyrosine kinase (AXL), and v-ros UR2 sarcoma virus oncogene homolog 1 (ROS1) and is considered a safer alternative for other ALK inhibitors. ESB chemical structure contains a dichloro-fluorophenyl ring and cyclic tertiary amine rings (piperazine) that can be bioactivated generating reactive intermediates.

          Methods

          In vitro metabolic study of ESB with human liver microsomes (HLMs) was performed and the hypothesis of generating reactive intermediates during metabolism was tested utilizing trapping agents to capture and stabilize reactive intermediates to facilitate their LC-MS/MS detection. Reduced glutathione (GSH) and potassium cyanide (KCN) were utilized as trapping agents for quinone methide and iminium intermediates, respectively.

          Results

          Four in vitro ESB phase I metabolites were characterized. Three reactive intermediates including one epoxide and one iminium intermediates were characterized. ESB bioactivation is proposed to occur through unexpected metabolic pathways. The piperazine ring was bioactivated through iminium ions intermediates generation, while the dichloro-phenyl group was bioactivated through a special mechanism that was revealed by LC-MS/MS.

          Conclusion

          These findings lay the foundations for additional work on ESB toxicity. Substituents to the bioactive centers (piperazine ring), either for blocking or isosteric replacement, would likely block or interrupt hydroxylation reaction that will end the bioactivation sequence.

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012.

          Estimates of the worldwide incidence and mortality from 27 major cancers and for all cancers combined for 2012 are now available in the GLOBOCAN series of the International Agency for Research on Cancer. We review the sources and methods used in compiling the national cancer incidence and mortality estimates, and briefly describe the key results by cancer site and in 20 large "areas" of the world. Overall, there were 14.1 million new cases and 8.2 million deaths in 2012. The most commonly diagnosed cancers were lung (1.82 million), breast (1.67 million), and colorectal (1.36 million); the most common causes of cancer death were lung cancer (1.6 million deaths), liver cancer (745,000 deaths), and stomach cancer (723,000 deaths). © 2014 UICC.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Non-small-cell lung cancer.

            In the decade since the last Lancet Seminar on lung cancer there have been advances in many aspects of the classification, diagnosis, and treatment of non-small-cell lung cancer (NSCLC). An international panel of experts has been brought together to focus on changes in the epidemiology and pathological classification of NSCLC, the role of CT screening and other techniques that could allow earlier diagnosis and more effective treatment of the disease, and the recently introduced seventh edition of the TNM classification and its relation to other prognostic factors such as biological markers. We also describe advances in treatment that have seen the introduction of a new generation of chemotherapy agents, a proven advantage to adjuvant chemotherapy after complete resection for specific stage groups, new techniques for the planning and administration of radiotherapy, and new surgical approaches to assess and reduce the risks of surgical treatment. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genotyping and genomic profiling of non-small-cell lung cancer: implications for current and future therapies.

              Substantial advances have been made in understanding critical molecular and cellular mechanisms driving tumor initiation, maintenance, and progression in non-small-cell lung cancer (NSCLC). Over the last decade, these findings have led to the discovery of a variety of novel drug targets and the development of new treatment strategies. Already, the standard of care for patients with advanced-stage NSCLC is shifting from selecting therapy empirically based on a patient's clinicopathologic features to using biomarker-driven treatment algorithms based on the molecular profile of a patient's tumor. This approach is currently best exemplified by treating patients with NSCLC with first-line tyrosine kinase inhibitors when their cancers harbor gain-of-function hotspot mutations in the epidermal growth factor receptor (EGFR) gene or anaplastic lymphoma kinase (ALK) gene rearrangements. These genotype-based targeted therapies represent the first step toward personalizing NSCLC therapy. Recent technology advances in multiplex genotyping and high-throughput genomic profiling by next-generation sequencing technologies now offer the possibility of rapidly and comprehensively interrogating the cancer genome of individual patients from small tumor biopsies. This advance provides the basis for categorizing molecular-defined subsets of patients with NSCLC in whom a growing list of novel molecularly targeted therapeutics are clinically evaluable and additional novel drug targets can be discovered. Increasingly, practicing oncologists are facing the challenge of determining how to select, interpret, and apply these new genetic and genomic assays. This review summarizes the evolution, early success, current status, challenges, and opportunities for clinical application of genotyping and genomic tests in therapeutic decision making for NSCLC.
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                dddt
                dddt
                Drug Design, Development and Therapy
                Dove
                1177-8881
                30 November 2020
                2020
                : 14
                : 5259-5273
                Affiliations
                [1 ]Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh 11451, Kingdom of Saudi Arabia
                Author notes
                Correspondence: Ali S Abdelhameed Tel +966 1146 98314Fax +966 1146 76 220 Email asaber@ksu.edu.sa
                Author information
                http://orcid.org/0000-0002-5910-2832
                http://orcid.org/0000-0002-1147-4960
                Article
                274018
                10.2147/DDDT.S274018
                7721118
                6bd653f5-d957-4061-ab8b-1399a0c64fb0
                © 2020 Abdelhameed et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 31 July 2020
                : 29 October 2020
                Page count
                Figures: 9, Tables: 3, References: 47, Pages: 15
                Categories
                Original Research

                Pharmacology & Pharmaceutical medicine
                in vitro phase-i metabolites,iminium intermediates,epoxide intermediates,human liver microsomes

                Comments

                Comment on this article