35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of component-subscription network topology on large-scale data centre performance scaling

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Modern large-scale date centres, such as those used for cloud computing service provision, are becoming ever-larger as the operators of those data centres seek to maximise the benefits from economies of scale. With these increases in size comes a growth in system complexity, which is usually problematic. There is an increased desire for automated "self-star" configuration, management, and failure-recovery of the data-centre infrastructure, but many traditional techniques scale much worse than linearly as the number of nodes to be managed increases. As the number of nodes in a median-sized data-centre looks set to increase by two or three orders of magnitude in coming decades, it seems reasonable to attempt to explore and understand the scaling properties of the data-centre middleware before such data-centres are constructed. In [1] we presented SPECI, a simulator that predicts aspects of large-scale data-centre middleware performance, concentrating on the influence of status changes such as policy updates or routine node failures. [...]. In [1] we used a first-approximation assumption that such subscriptions are distributed wholly at random across the data centre. In this present paper, we explore the effects of introducing more realistic constraints to the structure of the internal network of subscriptions. We contrast the original results [...] exploring the effects of making the data-centre's subscription network have a regular lattice-like structure, and also semi-random network structures resulting from parameterised network generation functions that create "small-world" and "scale-free" networks. We show that for distributed middleware topologies, the structure and distribution of tasks carried out in the data centre can significantly influence the performance overhead imposed by the middleware.

          Related collections

          Most cited references4

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          The structure and function of complex networks

          M. Newman (2003)
          Inspired by empirical studies of networked systems such as the Internet, social networks, and biological networks, researchers have in recent years developed a variety of techniques and models to help us understand or predict the behavior of these systems. Here we review developments in this field, including such concepts as the small-world effect, degree distributions, clustering, network correlations, random graph models, models of network growth and preferential attachment, and dynamical processes taking place on networks.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            The Datacenter as a Computer: An Introduction to the Design of Warehouse-Scale Machines

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Modeling and Simulation of Scalable Cloud Computing Environments and the CloudSim Toolkit: Challenges and Opportunities

              Cloud computing aims to power the next generation data centers and enables application service providers to lease data center capabilities for deploying applications depending on user QoS (Quality of Service) requirements. Cloud applications have different composition, configuration, and deployment requirements. Quantifying the performance of resource allocation policies and application scheduling algorithms at finer details in Cloud computing environments for different application and service models under varying load, energy performance (power consumption, heat dissipation), and system size is a challenging problem to tackle. To simplify this process, in this paper we propose CloudSim: an extensible simulation toolkit that enables modelling and simulation of Cloud computing environments. The CloudSim toolkit supports modelling and creation of one or more virtual machines (VMs) on a simulated node of a Data Center, jobs, and their mapping to suitable VMs. It also allows simulation of multiple Data Centers to enable a study on federation and associated policies for migration of VMs for reliability and automatic scaling of applications.
                Bookmark

                Author and article information

                Journal
                1004.0728

                Networking & Internet architecture
                Networking & Internet architecture

                Comments

                Comment on this article