34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fra-2/AP-1 controls bone formation by regulating osteoblast differentiation and collagen production

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Both the osteoblast-specific osteocalcin gene and collagen 1α2 are targets of the transcription factor Fra-2, which controls bone formation.

          Abstract

          The activator protein-1 (AP-1) transcription factor complex, in particular the Fos proteins, is an important regulator of bone homeostasis. Fra-2 ( Fosl2), a Fos-related protein of the AP-1 family, is expressed in bone cells, and newborn mice lacking Fra-2 exhibit defects in chondrocytes and osteoclasts. Here we show that Fra-2–deficient osteoblasts display a differentiation defect both in vivo and in vitro. Moreover, Fra-2–overexpressing mice are osteosclerotic because of increased differentiation of osteoblasts, which appears to be cell autonomous. Importantly, the osteoblast-specific osteocalcin ( Oc) gene and collagen1α2 ( col1α2) are transcriptional targets of Fra-2 in both murine and human bone cells. In addition, Fra-2, Oc, and col1 are expressed in stromal cells of human chondroblastic and osteoblastic osteosarcomas (Os’s) as well as during osteoblast differentiation of human Os cell lines. These findings reveal a novel function of Fra-2/AP-1 as a positive regulator of bone and matrix formation in mice and humans.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: not found
          • Article: not found

          Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Therapeutic approaches to bone diseases.

            The strength and integrity of our bones depends on maintaining a delicate balance between bone resorption by osteoclasts and bone formation by osteoblasts. As we age or as a result of disease, this delicate balancing act becomes tipped in favor of osteoclasts so that bone resorption exceeds bone formation, rendering bones brittle and prone to fracture. A better understanding of the biology of osteoclasts and osteoblasts is providing opportunities for developing therapeutics to treat diseases of bone. Drugs that inhibit the formation or activity of osteoclasts are valuable for treating osteoporosis, Paget's disease, and inflammation of bone associated with rheumatoid arthritis or periodontal disease. Far less attention has been paid to promoting bone formation with, for example, growth factors or hormones, an approach that would be a valuable adjunct therapy for patients receiving inhibitors of bone resorption.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reaching a genetic and molecular understanding of skeletal development.

              In the last ten years, we have made considerable progress in our genetic and molecular understanding of all aspects of skeletal development, chondrogenesis, joint formation, and osteogenesis. This review addresses the role of the principal growth factors and transcription factors affecting these different processes and presents, in several cases, the genetic cascade leading to cell differentiation.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                J. Cell Biol
                jcb
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                20 September 2010
                : 190
                : 6
                : 1093-1106
                Affiliations
                [1 ]Genes, Development, and Disease Group, BBVA Foundation, Cancer Cell Biology Program, Spanish National Cancer Center, E-28029 Madrid, Spain
                [2 ]Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, D-20246 Hamburg, Germany
                Author notes
                Correspondence to Erwin F. Wagner: ewagner@ 123456cnio.es
                Article
                201002111
                10.1083/jcb.201002111
                3101588
                20837772
                6bde7f6d-70af-4534-8525-f6093cf8f922
                © 2010 Bozec et al.

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 19 February 2010
                : 7 August 2010
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article