+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Penetration and efficacy of transdermal NSAIDs in a model of acute joint inflammation

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Prescription and OTC non-steroidal anti-inflammatory drugs (NSAIDs) are ubiquitous treatments for pain and inflammation; however, oral administration of these drugs may produce gastrointestinal (GI) side effects. Transdermal (TD) administration of NSAIDs circumvents these adverse events by avoiding the GI tract and, presumably, achieves regional drug levels of therapeutic effect and thereby, fewer off-target complications.


          A drug quantification method was developed for ibuprofen and celecoxib in canine plasma and synovial fluid using liquid chromatography and mass spectrometry. This method was employed to evaluate the penetrance of ibuprofen and celecoxib topical formulations in dogs. Effectiveness of these topical NSAID formulations was compared to the equivalent oral drug concentration in a canine sodium-urate model of acute joint inflammation. In this model, pain was quantified using a modified Canine Brief Pain Inventory questionnaire and regional inflammation using joint caliper measurements; the significance of intervention was evaluated using linear mixed models for repeated measures along with Bonferroni corrections.


          After seven days of chronic topical administration, Delivra™ (DEL) formulations of ibuprofen and celecoxib generated serum levels of 2.9µg/mL and 220ng/mL and synovial fluid levels of 1.8 µg/mL and 203 ng/mL (respectively). In the canine model of acute inflammation, the overall treatment effects as well as the treatment by time interactions were strongly significant ( P<0.001) for both drugs. Oral ibuprofen proved uniquely effective at the earliest time point, while all ibuprofen formulations were effective at treating pain at 8.5 and 24.5 hours post-induction. Similarly, all celecoxib formulations (oral and topical) were equally effective at 8.5 and 24.5 hours post-induction.


          DEL formulations of ibuprofen and celecoxib successfully introduced these NSAIDs into synovial fluid at concentrations similar to those observed in circulation. Furthermore, these formulations reduced symptoms of pain associated with acute inflammation. Oral and transdermally delivered NSAIDs have similar pain relief effects; therefore, a replacement or combinatorial treatment may provide a more stable pain relief profile. In conclusion, this work supports further investigation of TD products in the treatment of regional inflammatory events.

          Related collections

          Most cited references 32

          • Record: found
          • Abstract: not found
          • Article: not found

          Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs.

           J R Vane (1971)
            • Record: found
            • Abstract: found
            • Article: not found


            Osteoarthritis (OA) is the most common joint disorder, is associated with an increasing socioeconomic impact owing to the ageing population and mainly affects the diarthrodial joints. Primary OA results from a combination of risk factors, with increasing age and obesity being the most prominent. The concept of the pathophysiology is still evolving, from being viewed as cartilage-limited to a multifactorial disease that affects the whole joint. An intricate relationship between local and systemic factors modulates its clinical and structural presentations, leading to a common final pathway of joint destruction. Pharmacological treatments are mostly related to relief of symptoms and there is no disease-modifying OA drug (that is, treatment that will reduce symptoms in addition to slowing or stopping the disease progression) yet approved by the regulatory agencies. Identifying phenotypes of patients will enable the detection of the disease in its early stages as well as distinguish individuals who are at higher risk of progression, which in turn could be used to guide clinical decision making and allow more effective and specific therapeutic interventions to be designed. This Primer is an update on the progress made in the field of OA epidemiology, quality of life, pathophysiological mechanisms, diagnosis, screening, prevention and disease management.
              • Record: found
              • Abstract: found
              • Article: not found

              Ibuprofen: pharmacology, efficacy and safety.

              This review attempts to bring together information from a large number of recent studies on the clinical uses, safety and pharmacological properties of ibuprofen. Ibuprofen is widely used in many countries for the relief of symptoms of pain, inflammation and fever. The evidence for modes of action of ibuprofen are considered in relation to its actions in controlling inflammation, pain and fever, as well as the adverse effects of the drug. At low doses (800-1,200 mg day(-1)) which in many countries are approved for non-prescription (over-the-counter) sale ibuprofen has a good safety profile comparable with paracetamol. Its analgesic activity is linked to its anti-inflammatory effects and is related to reduction in the ex vivo production in blood of cyclo-oxygenase (COX)-1 and COX-2 derived prostanoids. Higher prescription doses (circa 1,800-2,400 mg day(-1)) are employed long-term for the treatment of rheumatic and other more severe musculo-skeletal conditions. Recent evidence from large-scale clinical trials with the newer coxibs, where ibuprofen was as a comparator, have confirmed earlier studies which have shown that ibuprofen has comparable therapeutic benefits with coxibs and other NSAIDs. For long-term usage (6+ months) there are greater numbers of drop-outs due to reduced effectiveness of therapy, a feature which is common with NSAIDs. Spontaneous reports of adverse events and adverse drug reactions (ADRs) in clinical trails from long-term coxib comparator studies, as well as in epidemiological studies, shows that ibuprofen has relatively low risks for gastro-intestinal (GI), hepato-renal and other, rarer, ADRs compared with other NSAIDs and coxibs. A slightly higher risk of cardiovascular (CV) events has been reported in some, but not all studies, but the risks are in general lower than with some coxibs and diclofenac. The possibility that ibuprofen may interfere with the anti-platelet effects of aspirin, though arguably of low grade or significance, has given rise to caution on its use in patients that are at risk for CV conditions that take aspirin for preventing these conditions. Paediatric use of ibuprofen is reviewed and the main results are that the drug is relatively safe and effective as a treatment of acute pain and fever. It is probably more effective than paracetamol as an antipyretic. This assessment of the safety and benefits of ibuprofen can be summarized thus: (1) Ibuprofen at OTC doses has low possibilities of serious GI events, and little prospect of developing renal and associated CV events. Ibuprofen OTC does not represent a risk for developing liver injury especially the irreversible liver damage observed with paracetamol and the occasional liver reactions from aspirin. (2) The pharmacokinetic properties of ibuprofen, especially the short plasma half-life of elimination, lack of development of pathologically related metabolites (e.g. covalent modification of liver proteins by the quinine-imine metabolite of paracetamol or irreversible acetylation of biomolecules by aspirin) are support for the view that these pharmacokinetic and notably metabolic effects of ibuprofen favour its low toxic potential. (3) The multiple actions of ibuprofen in controlling inflammation combine with moderate inhibition of COX-1 and COX-2 and low residence time of the drug in the body may account for the low GI, CV and renal risks from ibuprofen, especially at OTC doses.

                Author and article information

                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                13 November 2018
                : 11
                : 2809-2819
                [1 ]Department of Research and Development, Delivra Corp., Charlottetown, PE, Canada, dbaranowski@ 123456delivrainc.com
                [2 ]Vivocore Inc, Toronto, ON, Canada
                [3 ]InterVivo Solutions Inc, Toronto, ON, Canada
                Author notes
                Correspondence: David Charles Baranowski, Delivra Corp., NRC-PEI, Suite 407, 550 University Ave, Charlottetown, PE, C1A 4P3, Canada, Tel +1 902 367 3225, Email dbaranowski@ 123456delivrainc.com
                © 2018 Baranowski et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Original Research

                Anesthesiology & Pain management

                canine model, osteoarthritis, pain, celecoxib, ibuprofen


                Comment on this article