18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An Automatic Braking System That Stabilizes Leukocyte Rolling by an Increase in Selectin Bond Number with Shear

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Wall shear stress in postcapillary venules varies widely within and between tissues and in response to inflammation and exercise. However, the speed at which leukocytes roll in vivo has been shown to be almost constant within a wide range of wall shear stress, i.e., force on the cell. Similarly, rolling velocities on purified selectins and their ligands in vitro tend to plateau. This may be important to enable rolling leukocytes to be exposed uniformly to activating stimuli on endothelium, independent of local hemodynamic conditions. Wall shear stress increases the rate of dissociation of individual selectin–ligand tether bonds exponentially ( 1, 4) thereby destabilizing rolling. We find that this is compensated by a shear-dependent increase in the number of bonds per rolling step. We also find an increase in the number of microvillous tethers to the substrate. This explains (a) the lack of firm adhesion through selectins at low shear stress or high ligand density, and (b) the stability of rolling on selectins to wide variation in wall shear stress and ligand density, in contrast to rolling on antibodies ( 14). Furthermore, our data successfully predict the threshold wall shear stress below which rolling does not occur. This is a special case of the more general regulation by shear of the number of bonds, in which the number of bonds falls below one.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Dynamic strength of molecular adhesion bonds.

          In biology, molecular linkages at, within, and beneath cell interfaces arise mainly from weak noncovalent interactions. These bonds will fail under any level of pulling force if held for sufficient time. Thus, when tested with ultrasensitive force probes, we expect cohesive material strength and strength of adhesion at interfaces to be time- and loading rate-dependent properties. To examine what can be learned from measurements of bond strength, we have extended Kramers' theory for reaction kinetics in liquids to bond dissociation under force and tested the predictions by smart Monte Carlo (Brownian dynamics) simulations of bond rupture. By definition, bond strength is the force that produces the most frequent failure in repeated tests of breakage, i.e., the peak in the distribution of rupture forces. As verified by the simulations, theory shows that bond strength progresses through three dynamic regimes of loading rate. First, bond strength emerges at a critical rate of loading (> or = 0) at which spontaneous dissociation is just frequent enough to keep the distribution peak at zero force. In the slow-loading regime immediately above the critical rate, strength grows as a weak power of loading rate and reflects initial coupling of force to the bonding potential. At higher rates, there is crossover to a fast regime in which strength continues to increase as the logarithm of the loading rate over many decades independent of the type of attraction. Finally, at ultrafast loading rates approaching the domain of molecular dynamics simulations, the bonding potential is quickly overwhelmed by the rapidly increasing force, so that only naked frictional drag on the structure remains to retard separation. Hence, to expose the energy landscape that governs bond strength, molecular adhesion forces must be examined over an enormous span of time scales. However, a significant gap exists between the time domain of force measurements in the laboratory and the extremely fast scale of molecular motions. Using results from a simulation of biotin-avidin bonds (Izrailev, S., S. Stepaniants, M. Balsera, Y. Oono, and K. Schulten. 1997. Molecular dynamics study of unbinding of the avidin-biotin complex. Biophys. J., this issue), we describe how Brownian dynamics can help bridge the gap between molecular dynamics and probe tests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration.

            Continuous deformation and entry flow of single blood granulocytes into small caliber micropipets at various suction pressures have been studied to determine an apparent viscosity for the cell contents and to estimate the extent that dissipation in a cortical layer adjacent to the cell surface contributes to the total viscous flow resistance. Experiments were carried out with a wide range of pipet sizes (2.0-7.5 microns) and suction pressures (10(2)-10(4) dyn/cm2) to examine the details of the entry flow. The results show that the outer cortex of the cell maintains a small persistent tension of approximately 0.035 dyn/cm. The tension creates a threshold pressure below which the cell will not enter the pipet. The superficial plasma membrane of these cells appears to establish an upper limit to surface dilation which is reached after microscopic "ruffles" and "folds" have been pulled smooth. With aspiration of cells by small pipets (less than 2.7 microns), the limit to surface expansion was derived from the maximal extension of the cell into the pipet; final areas were measured to be 2.1 to 2.2 times the area of the initial spherical shape. For suctions in excess of a threshold, the response to constant pressure was continuous flow in proportion to excess pressure above the threshold with only a small nonlinearity over time until the cell completely entered the pipet (for pipet calibers greater than 2.7 microns). With a theoretical model introduced in a companion paper, (Yeung, A., and E. Evans., 1989, Biophys. J. 56:139-149) the entry flow response versus pipet size and suction pressure was analyzed to estimate the apparent viscosity of the cell interior and the ratio of cortical flow resistance to flow resistance from the cell interior. The apparent viscosity was found to depend strongly on temperature with values on the order of 2 x 10(3) poise at 23 degrees C, lower values of 1 x 10(3) poise at 37 degrees C, but extremely large values in excess of 10(4) poise below 10 degrees C. Because of scatter in cell response, it was not possible to accurately establish the characteristic ratio for flow resistance in the cortex to that inside the cell; however, the data showed that the cortex does not contribute significantly to the total flow resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The integrin VLA-4 supports tethering and rolling in flow on VCAM-1

              Selectins have previously been shown to tether a flowing leukocyte to a vessel wall and mediate rolling. Here, we report that an intergrin, VLA- 4, can also support tethering and rolling. Blood T lymphocytes and alpha 4 integrin-transfected cells can tether in shear flow, and then roll, through binding of the intergrin VLA-4 to purified VCAM-1 on the wall of a flow chamber. VLA-4 transfectants showed similar tethering and rolling on TNF-stimulated endothelium. Tethering efficiency, rolling velocity, and resistance to detachment are related to VCAM-1 density. Tethering and rolling did not occur on ICAM-1, fibronectin, or fibronectin fragments, and tethering did not require integrin activation or the presence of an alpha 4 cytoplasmic domain. Arrest of rolling cells on VCAM-1 occurred spontaneously, and/or was triggered by integrin activating agents Mn2+, phorbol ester, and mAb TS2/16. These agents, and the alpha 4 cytoplasmic domain, promoted increased resistance to detachment. Together the results show that VLA-4 is a versatile integrin that can mediate tethering, rolling, and firm arrest on VCAM-1.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                11 January 1999
                : 144
                : 1
                : 185-200
                Affiliations
                The Center for Blood Research and Harvard Medical School, Department of Pathology, Boston, Massachusetts 02115
                Author notes

                Address correspondence to T. Springer, The Center for Blood Research, Harvard Medical School, Department of Pathology, 200 Longwood Ave., Room 251, Boston, MA 02115. Tel.: (617) 278-3200. Fax: (617) 278-3232. E-mail: springer@ 123456sprsgi.med.harvard.edu

                Article
                10.1083/jcb.144.1.185
                2148129
                9885254
                6bea8cf9-1ea2-40ac-ae88-8bba14bfb400
                Copyright @ 1999
                History
                : 29 October 1998
                Categories
                Articles

                Cell biology
                l-selectin,e-selectin,peripheral node addressin,cell adhesion,microvilli
                Cell biology
                l-selectin, e-selectin, peripheral node addressin, cell adhesion, microvilli

                Comments

                Comment on this article