6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      From craquelures to spiral crack patterns: influence of layer thickness on the crack patterns induced by desiccation

      ,
      Soft Matter
      Royal Society of Chemistry (RSC)

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: not found
          • Article: not found

          The Phenomena of Rupture and Flow in Solids

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cracking in drying colloidal films.

            It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flow and fracture in drying nanoparticle suspensions.

              Drying aqueous suspensions of monodisperse silica nanoparticles can fracture in remarkable patterns. As the material solidifies, evenly spaced cracks invade from the drying surface, with individual cracks undergoing intermittent motion. We show that the growth of cracks is limited by the advancement of the compaction front, which is governed by a balance of evaporation and flow of fluid at the drying surface. Surprisingly, the macroscopic dynamics of drying show signatures of molecular-scale fluid effects.
                Bookmark

                Author and article information

                Journal
                SMOABF
                Soft Matter
                Soft Matter
                Royal Society of Chemistry (RSC)
                1744-683X
                1744-6848
                2011
                2011
                : 7
                : 6
                : 2552
                Article
                10.1039/c0sm00900h
                6bf91b06-0d4f-4894-ad41-b4523045139b
                © 2011
                History

                Comments

                Comment on this article