28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Egg Production in a Coastal Seabird, the Glaucous-Winged Gull ( Larus glaucescens), Declines during the Last Century

      research-article
      *
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Seabirds integrate information about oceanic ecosystems across time and space, and are considered sensitive indicators of marine conditions. To assess whether hypothesized long-term foodweb changes such as forage fish declines may be reflected in a consumer's life history traits over time, I used meta-regression to evaluate multi-decadal changes in aspects of egg production in the glaucous-winged gull ( Larus glaucescens), a common coastal bird. Study data were derived from literature searches of published papers and unpublished historical accounts, museum egg collections, and modern field studies, with inclusion criteria based on data quality and geographic area of the original study. Combined historical and modern data showed that gull egg size declined at an average of 0.04 cc y −1 from 1902 (108 y), equivalent to a decline of 5% of mean egg volume, while clutch size decreased over 48 y from a mean of 2.82 eggs per clutch in 1962 to 2.25 in 2009. There was a negative relationship between lay date and mean clutch size in a given year, with smaller clutches occurring in years where egg laying commenced later. Lay date itself advanced over time, with commencement of laying presently (2008–2010) 7 d later than in previous studies (1959–1986). This study demonstrates that glaucous-winged gull investment in egg production has declined significantly over the past ∼50–100 y, with such changes potentially contributing to recent population declines. Though gulls are generalist feeders that should readily be able to buffer themselves against food web changes, they are likely nutritionally constrained during the early breeding period, when egg production requirements are ideally met by consumption of high-quality prey such as forage fish. This study's results suggest a possible decline in the availability of such prey, and the incremental long-term impoverishment of a coastal marine ecosystem bordering one of North America's rapidly growing urban areas.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: not found
          • Article: not found

          Food as a Limit on Breeding Birds: A Life-History Perspective

          (1987)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cascading top-down effects of changing oceanic predator abundances.

            1. Top-down control can be an important determinant of ecosystem structure and function, but in oceanic ecosystems, where cascading effects of predator depletions, recoveries, and invasions could be significant, such effects had rarely been demonstrated until recently. 2. Here we synthesize the evidence for oceanic top-down control that has emerged over the last decade, focusing on large, high trophic-level predators inhabiting continental shelves, seas, and the open ocean. 3. In these ecosystems, where controlled manipulations are largely infeasible, 'pseudo-experimental' analyses of predator-prey interactions that treat independent predator populations as 'replicates', and temporal or spatial contrasts in predator populations and climate as 'treatments', are increasingly employed to help disentangle predator effects from environmental variation and noise. 4. Substantial reductions in marine mammals, sharks, and piscivorous fishes have led to mesopredator and invertebrate predator increases. Conversely, abundant oceanic predators have suppressed prey abundances. Predation has also inhibited recovery of depleted species, sometimes through predator-prey role reversals. Trophic cascades have been initiated by oceanic predators linking to neritic food webs, but seem inconsistent in the pelagic realm with effects often attenuating at plankton. 5. Top-down control is not uniformly strong in the ocean, and appears contingent on the intensity and nature of perturbations to predator abundances. Predator diversity may dampen cascading effects except where nonselective fisheries deplete entire predator functional groups. In other cases, simultaneous exploitation of predator and prey can inhibit prey responses. Explicit consideration of anthropogenic modifications to oceanic foodwebs should help inform predictions about trophic control. 6. Synthesis and applications. Oceanic top-down control can have important socio-economic, conservation, and management implications as mesopredators and invertebrates assume dominance, and recovery of overexploited predators is impaired. Continued research aimed at integrating across trophic levels is needed to understand and forecast the ecosystem effects of changing oceanic predator abundances, the relative strength of top-down and bottom-up control, and interactions with intensifying anthropogenic stressors such as climate change.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              The impact of climate change on birds

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2011
                18 July 2011
                : 6
                : 7
                : e22027
                Affiliations
                [1]Centre for Applied Conservation Research, University of British Columbia, Vancouver, British Columbia, Canada
                Institute of Marine Research, Norway
                Author notes

                Analyzed the data: LKB. Wrote the paper: LKB. Designed study: LKB. Collected data: LKB.

                Article
                PONE-D-11-03651
                10.1371/journal.pone.0022027
                3138773
                21789207
                6c0c51b8-81bd-4968-8ca8-84b5091c5d6f
                Louise K. Blight. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 22 February 2011
                : 13 June 2011
                Page count
                Pages: 8
                Categories
                Research Article
                Agriculture
                Animal Management
                Animal Behavior
                Biology
                Bioethics
                Animal Studies
                Ecology
                Community Ecology
                Food Web Structure
                Ecological Metrics
                Population Size
                Bioindicators
                Conservation Science
                Global Change Ecology
                Marine Ecology
                Evolutionary Biology
                Animal Behavior
                Marine Biology
                Marine Ecology
                Population Biology
                Population Dynamics
                Predator-Prey Dynamics
                Population Metrics
                Population Size
                Zoology
                Animal Behavior
                Ornithology
                Earth Sciences
                Marine and Aquatic Sciences
                Marine Ecology
                Science Policy
                Bioethics
                Animal Studies
                Veterinary Science
                Animal Management
                Animal Behavior

                Uncategorized
                Uncategorized

                Comments

                Comment on this article