18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure of the malaria vaccine candidate antigen CyRPA and its complex with a parasite invasion inhibitory antibody

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Invasion of erythrocytes by Plasmodial merozoites is a composite process involving the interplay of several proteins. Among them, the Plasmodium falciparum Cysteine-Rich Protective Antigen (PfCyRPA) is a crucial component of a ternary complex, including Reticulocyte binding-like Homologous protein 5 (PfRH5) and the RH5-interacting protein (PfRipr), essential for erythrocyte invasion. Here, we present the crystal structures of PfCyRPA and its complex with the antigen-binding fragment of a parasite growth inhibitory antibody. PfCyRPA adopts a 6-bladed β-propeller structure with similarity to the classic sialidase fold, but it has no sialidase activity and fulfills a purely non-enzymatic function. Characterization of the epitope recognized by protective antibodies may facilitate design of peptidomimetics to focus vaccine responses on protective epitopes. Both in vitro and in vivo anti-PfCyRPA and anti-PfRH5 antibodies showed more potent parasite growth inhibitory activity in combination than on their own, supporting a combined delivery of PfCyRPA and PfRH5 in vaccines.

          DOI: http://dx.doi.org/10.7554/eLife.20383.001

          eLife digest

          Malaria is one of the deadliest infectious diseases worldwide, killing over 400,000 people a year. About 200 million people are infected every year, placing a huge social and medical burden especially on developing countries. Microscopic parasites known as Plasmodium are responsible for causing this disease. Plasmodium parasites have a complex life cycle involving both mosquito and mammal hosts. This includes a stage where the parasites infect the mammal’s red blood cells, which causes the symptoms of the disease. In 2012, a team of researchers discovered that a protein called CyRPA forms a group (or ‘complex’) with several other proteins to allow the parasites to enter red blood cells.

          Developing a vaccine is one of the most promising approaches to prevent malaria. Vaccines help the body to recognise and fight an invading microbe by triggering an immune response that results in the production of proteins called antibodies, which can bind to specific molecules on the surface of the microbe. If the microbe later enters the body, these antibodies can be produced quickly to eliminate the microbe before it causes disease. However, efforts to develop a highly effective vaccine against malaria have so far been unsuccessful.

          Favuzza et al. – including some of the researchers involved in the 2012 work – used a technique called X-ray crystallography to investigate the three-dimensional structure of the CyRPA protein. The experiments show that an antibody is able to bind to a region of CyRPA – a designated ‘protective epitope’ – that is similar in the CyRPA proteins of all Plasmodium falciparum strains. These antibodies can prevent the parasite from entering the red blood cells, and vaccines containing CyRPA may therefore be effective at protecting individuals from malaria. The findings of Favuzza et al. also suggest that using CyRPA in combination with another protein in the complex called RH5 could make the vaccine more powerful as it would make it harder for the parasite to become resistant.

          The next step following on from this work is to design a vaccine containing protective CyRPA epitopes that triggers an immune response in mammals that is strong enough to reduce the numbers of parasites in the blood. A future challenge will be to develop a vaccine that combines several proteins involved in different stages of the parasite’s life cycle to provide full protection against malaria.

          DOI: http://dx.doi.org/10.7554/eLife.20383.002

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Shape complementarity at protein/protein interfaces.

          A new statistic Sc, which has a number of advantages over other measures of packing, is used to examine the shape complementarity of protein/protein interfaces selected from the Brookhaven Protein Data Bank. It is shown using Sc that antibody/antigen interfaces as a whole exhibit poorer shape complementarity than is observed in other systems involving protein/protein interactions. This result can be understood in terms of the fundamentally different evolutionary history of particular antibody/antigen associations compared to other systems considered, and in terms of the differing chemical natures of the interfaces.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Analysis of Plasmodium falciparum diversity in natural infections by deep sequencing

            Malaria elimination strategies require surveillance of the parasite population for genetic changes that demand a public health response, such as new forms of drug resistance. 1,2 Here we describe methods for large-scale analysis of genetic variation in Plasmodium falciparum by deep sequencing of parasite DNA obtained from the blood of patients with malaria, either directly or after short term culture. Analysis of 86,158 exonic SNPs that passed genotyping quality control in 227 samples from Africa, Asia and Oceania provides genome-wide estimates of allele frequency distribution, population structure and linkage disequilibrium. By comparing the genetic diversity of individual infections with that of the local parasite population, we derive a metric of within-host diversity that is related to the level of inbreeding in the population. An open-access web application has been established for exploration of regional differences in allele frequency and of highly differentiated loci in the P. falciparum genome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The cellular and molecular basis for malaria parasite invasion of the human red blood cell

              Malaria is a major disease of humans caused by protozoan parasites from the genus Plasmodium. It has a complex life cycle; however, asexual parasite infection within the blood stream is responsible for all disease pathology. This stage is initiated when merozoites, the free invasive blood-stage form, invade circulating erythrocytes. Although invasion is rapid, it is the only time of the life cycle when the parasite is directly exposed to the host immune system. Significant effort has, therefore, focused on identifying the proteins involved and understanding the underlying mechanisms behind merozoite invasion into the protected niche inside the human erythrocyte.
                Bookmark

                Author and article information

                Contributors
                Role: Reviewing editor
                Journal
                eLife
                Elife
                eLife
                eLife
                eLife
                eLife Sciences Publications, Ltd
                2050-084X
                14 February 2017
                2017
                : 6
                : e20383
                Affiliations
                [1 ]deptMedical Parasitology and Infection Biology Department , Swiss Tropical and Public Health Institute , Basel, Switzerland
                [2 ]University of Basel , Basel, Switzerland
                [3 ]deptRoche Pharmaceutical Research and Early Development , Small Molecule Research, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd. , Basel, Switzerland
                [4]Harvard Medical School , United States
                [5]Harvard Medical School , United States
                Author notes
                [†]

                Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, México.

                Author information
                http://orcid.org/0000-0002-1394-927X
                http://orcid.org/0000-0003-1957-2925
                Article
                20383
                10.7554/eLife.20383
                5349852
                28195038
                6c1748bc-df9b-48ca-8786-d8c06a5a5eba
                © 2017, Favuzza et al

                This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

                History
                : 08 August 2016
                : 06 February 2017
                Funding
                Funded by: Uniscientia Stiftung;
                Award Recipient :
                The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
                Categories
                Research Article
                Biophysics and Structural Biology
                Microbiology and Infectious Disease
                Custom metadata
                2.5
                The structure of the promising malaria blood-stage vaccine candidate antigen PfCyRPA and the characterization of a protective epitope are facilitating research on its essential role in parasite invasion, and will guide future epitope-focused vaccine design.

                Life sciences
                cyrpa,malaria vaccine candidate,sialidase,crystal structure,β-propeller,invasion inhibitory antibody,<i>p. falciparum</i>

                Comments

                Comment on this article