8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Dysfunction of Autophagy: A Possible Mechanism Involved in the Pathogenesis of Vitiligo by Breaking the Redox Balance of Melanocytes

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitiligo is a common chronic acquired pigmentation disorder characterized by loss of functional melanocytes from the epidermis and follicular reservoir. Among multiple hypotheses which have been proposed in the pathogenesis of vitiligo, autoimmunity and oxidative stress-mediated toxicity in melanocytes remain most widely accepted. Macroautophagy is a lysosome-dependent degradation pathway which widely exists in eukaryotic cells. Autophagy participates in the oxidative stress response in many cells, which plays a protective role in preventing damage caused by oxidative stress. Recent studies have enrolled autophagy as an important regulator in limiting damage caused by UV light and lipid oxidation, keeping oxidative stress in a steady state in epidermal keratinocytes and maintaining normal proliferation and aging of melanocytes. Impairment of autophagy might disrupt the antioxidant defense system which renders melanocytes to oxidative insults. These findings provide supportive evidence to explore new ideas of the pathogenesis of vitiligo and other pigmentation disorders.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          p62 at the crossroads of autophagy, apoptosis, and cancer.

          The signaling adaptor p62 is a multidomain protein implicated in the activation of the transcription factor NF-kappaB. Recent findings link p62 activity to the extrinsic apoptosis pathway, and Mathew et al. (2009) now show that the modulation of p62 by autophagy is a key factor in tumorigenesis. These findings place p62 at critical decision points that control cell death and survival.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A noncanonical mechanism of Nrf2 activation by autophagy deficiency: direct interaction between Keap1 and p62.

            In response to stress, cells can utilize several cellular processes, such as autophagy, which is a bulk-lysosomal degradation pathway, to mitigate damages and increase the chances of cell survival. Deregulation of autophagy causes upregulation of p62 and the formation of p62-containing aggregates, which are associated with neurodegenerative diseases and cancer. The Nrf2-Keap1 pathway functions as a critical regulator of the cell's defense mechanism against oxidative stress by controlling the expression of many cellular protective proteins. Under basal conditions, Nrf2 is ubiquitinated by the Keap1-Cul3-E3 ubiquitin ligase complex and targeted to the 26S proteasome for degradation. Upon induction, the activity of the E3 ubiquitin ligase is inhibited through the modification of cysteine residues in Keap1, resulting in the stabilization and activation of Nrf2. In this current study, we identified the direct interaction between p62 and Keap1 and the residues required for the interaction have been mapped to 349-DPSTGE-354 in p62 and three arginines in the Kelch domain of Keap1. Accumulation of endogenous p62 or ectopic expression of p62 sequesters Keap1 into aggregates, resulting in the inhibition of Keap1-mediated Nrf2 ubiquitination and its subsequent degradation by the proteasome. In contrast, overexpression of mutated p62, which loses its ability to interact with Keap1, had no effect on Nrf2 stability, demonstrating that p62-mediated Nrf2 upregulation is Keap1 dependent. These findings demonstrate that autophagy deficiency activates the Nrf2 pathway in a noncanonical cysteine-independent mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets.

              Autophagy is an evolutionary conserved cell survival process for degradation of long-lived proteins, damaged organelles and protein aggregates. The mammalian proteins p62 and NBR1 are selectively degraded by autophagy and can act as cargo receptors or adaptors for the autophagic degradation of ubiquitinated substrates. Despite differing in size and primary sequence, both proteins share a similar domain architecture containing an N-terminal PB1 domain, a LIR motif interacting with ATG8 family proteins, and a C-terminal UBA domain interacting with ubiquitin. The LIR motif is essential for their autophagic degradation, indicating that ATG8 family proteins are responsible for the docking of p62 and NBR1 to nucleating autophagosomes. p62 and NBR1 co-operate in the sequestration of misfolded and ubiquitinated proteins in p62 bodies and are both required for their degradation by autophagy. Here we discuss the role of p62 and NBR1 in degradation of ubiquitinated cargoes and the putative role of LIR as a general motif for docking of proteins to ATG8 family proteins.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2016
                29 November 2016
                : 2016
                Affiliations
                Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
                Author notes

                Academic Editor: Kota V. Ramana

                Article
                10.1155/2016/3401570
                5153471
                6c1a7fd7-ccac-4987-9fdb-0d8e6594e3e0
                Copyright © 2016 Zhuhui Qiao et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81573064
                Award ID: 81472901
                Funded by: Shanghai Pujiang Program
                Award ID: 14PJ1401800
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article