4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LIONESS Lab: a free web-based platform for conducting interactive experiments online

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          LIONESS Lab is a free web-based platform for interactive online experiments. An intuitive, user-friendly graphical interface enables researchers to develop, test, and share experiments online, with minimal need for programming experience. LIONESS Lab provides solutions for the methodological challenges of interactive online experimentation, including ways to reduce waiting time, form groups on-the-fly, and deal with participant dropout. We highlight key features of the software, and show how it meets the challenges of conducting interactive experiments online.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Amazon's Mechanical Turk: A New Source of Inexpensive, Yet High-Quality, Data?

          Amazon's Mechanical Turk (MTurk) is a relatively new website that contains the major elements required to conduct research: an integrated participant compensation system; a large participant pool; and a streamlined process of study design, participant recruitment, and data collection. In this article, we describe and evaluate the potential contributions of MTurk to psychology and other social sciences. Findings indicate that (a) MTurk participants are slightly more demographically diverse than are standard Internet samples and are significantly more diverse than typical American college samples; (b) participation is affected by compensation rate and task length, but participants can still be recruited rapidly and inexpensively; (c) realistic compensation rates do not affect data quality; and (d) the data obtained are at least as reliable as those obtained via traditional methods. Overall, MTurk can be used to obtain high-quality data inexpensively and rapidly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            PSYCHOLOGY. Estimating the reproducibility of psychological science.

            Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47% of original effect sizes were in the 95% confidence interval of the replication effect size; 39% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Conducting behavioral research on Amazon's Mechanical Turk.

              Amazon's Mechanical Turk is an online labor market where requesters post jobs and workers choose which jobs to do for pay. The central purpose of this article is to demonstrate how to use this Web site for conducting behavioral research and to lower the barrier to entry for researchers who could benefit from this platform. We describe general techniques that apply to a variety of types of research and experiments across disciplines. We begin by discussing some of the advantages of doing experiments on Mechanical Turk, such as easy access to a large, stable, and diverse subject pool, the low cost of doing experiments, and faster iteration between developing theory and executing experiments. While other methods of conducting behavioral research may be comparable to or even better than Mechanical Turk on one or more of the axes outlined above, we will show that when taken as a whole Mechanical Turk can be a useful tool for many researchers. We will discuss how the behavior of workers compares with that of experts and laboratory subjects. Then we will illustrate the mechanics of putting a task on Mechanical Turk, including recruiting subjects, executing the task, and reviewing the work that was submitted. We also provide solutions to common problems that a researcher might face when executing their research on this platform, including techniques for conducting synchronous experiments, methods for ensuring high-quality work, how to keep data private, and how to maintain code security.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Journal of the Economic Science Association
                J Econ Sci Assoc
                Springer Science and Business Media LLC
                2199-6776
                2199-6784
                June 2020
                June 27 2020
                June 2020
                : 6
                : 1
                : 95-111
                Article
                10.1007/s40881-020-00087-0
                6c1ca3d5-0734-4783-a0d2-5df64983865f
                © 2020

                https://creativecommons.org/licenses/by/4.0

                https://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article