16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molecular and preclinical basis to inhibit PGE2receptors EP2 and EP4 as a novel nonsteroidal therapy for endometriosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Endometriosis is a debilitating, estrogen-dependent, progesterone-resistant, inflammatory gynecological disease of reproductive age women. Two major clinical symptoms of endometriosis are chronic intolerable pelvic pain and subfertility or infertility, which profoundly affect the quality of life in women. Current hormonal therapies to induce a hypoestrogenic state are unsuccessful because of undesirable side effects, reproductive health concerns, and failure to prevent recurrence of disease. There is a fundamental need to identify nonestrogen or nonsteroidal targets for the treatment of endometriosis. Peritoneal fluid concentrations of prostaglandin E2 (PGE2) are higher in women with endometriosis, and this increased PGE2 plays important role in survival and growth of endometriosis lesions. The objective of the present study was to determine the effects of pharmacological inhibition of PGE2 receptors, EP2 and EP4, on molecular and cellular aspects of the pathogenesis of endometriosis and associated clinical symptoms. Using human fluorescent endometriotic cell lines and chimeric mouse model as preclinical testing platform, our results, to our knowledge for the first time, indicate that selective inhibition of EP2/EP4: (i) decreases growth and survival of endometriosis lesions; (ii) decreases angiogenesis and innervation of endometriosis lesions; (iii) suppresses proinflammatory state of dorsal root ganglia neurons to decrease pelvic pain; (iv) decreases proinflammatory, estrogen-dominant, and progesterone-resistant molecular environment of the endometrium and endometriosis lesions; and (v) restores endometrial functional receptivity through multiple mechanisms. Our novel findings provide a molecular and preclinical basis to formulate long-term nonestrogen or nonsteroidal therapy for endometriosis.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Pathogenesis and pathophysiology of endometriosis.

          Originally described over three hundred years ago, endometriosis is classically defined by the presence of endometrial glands and stroma in extrauterine locations. Endometriosis is an inflammatory, estrogen-dependent condition associated with pelvic pain and infertility. This work reviews the disease process from theories regarding origin to the molecular basis for disease sequelae. A thorough understanding of the histopathogenesis and pathophysiology of endometriosis is essential to the development of novel diagnostic and treatment approaches for this debilitating condition. Copyright © 2012 American Society for Reproductive Medicine. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mouse Estrous Cycle Identification Tool and Images

            The efficiency of producing timed pregnant or pseudopregnant mice can be increased by identifying those in proestrus or estrus. Visual observation of the vagina is the quickest method, requires no special equipment, and is best used when only proestrus or estrus stages need to be identified. Strain to strain differences, especially in coat color can make it difficult to determine the stage of the estrous cycle accurately by visual observation. Presented here are a series of images of the vaginal opening at each stage of the estrous cycle for 3 mouse strains of different coat colors: black (C57BL/6J), agouti (CByB6F1/J) and albino (BALB/cByJ). When all 4 stages (proestrus, estrus, metestrus, and diestrus) need to be identified, vaginal cytology is regarded as the most accurate method. An identification tool is presented to aid the user in determining the stage of estrous when using vaginal cytology. These images and descriptions are an excellent resource for learning how to determine the stage of the estrous cycle by visual observation or vaginal cytology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of an invasive, N-cadherin-expressing epithelial cell type in endometriosis using a new cell culture model.

              Studies of molecular, cellular, and pathophysiological parameters in endometriosis are primarily hampered by a lack of in vitro model systems, such as endometriotic cell lines. To overcome this we successfully established cell lines from peritoneal endometriotic biopsies and characterized them at the molecular and cellular level. Two types of cells could be transformed: one exhibiting stromal cell features (cytokeratin/E-cadherin-negative), the other epithelial-like (cytokeratin-positive/E-cadherin-negative, invasive in vitro). Using a Matrigel assay the epithelial-like cell lines proved as invasive as metastatic carcinoma cells, possibly through the influence of N-cadherin implicated as a path-finding cadherin allowing cellular invasion and migration in both normal and pathophysiological processes. Our results support the idea that endometriosis, although not neoplastic, shares features with malignant cells and that metastasis in endometriosis may include mechanisms proposed for micrometastasis in cancer. Thus our cell lines will not only be useful tools for analyzing molecular and cellular events relating to endometriosis, but may also represent a paradigm for invasion and metastasis in general.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proc Natl Acad Sci USA
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                August 04 2015
                August 04 2015
                August 04 2015
                July 21 2015
                : 112
                : 31
                : 9716-9721
                Article
                10.1073/pnas.1507931112
                26199416
                6c2435e5-f0e0-4bfc-9aea-a4157f7009b8
                © 2015

                Free to read

                http://www.pnas.org/site/misc/userlicense.xhtml

                History

                Comments

                Comment on this article