16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Carboxyl-terminal domain of MUC16 imparts tumorigenic and metastatic functions through nuclear translocation of JAK2 to pancreatic cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MUC16 (CA125) is a type-I transmembrane glycoprotein that is up-regulated in multiple cancers including pancreatic cancer (PC). However, the existence and role of carboxyl-terminal MUC16 generated following its cleavage in PC is unknown. Our previous study using a systematic dual-epitope tagged domain deletion approach of carboxyl-terminal MUC16 has demonstrated the generation of a 17-kDa cleaved MUC16 (MUC16-Cter). Here, we demonstrate the functional significance of MUC16-Cter in PC using the dual-epitope tagged version (N-terminal FLAG- and C-terminal HA-tag) of 114 carboxyl-terminal residues of MUC16 (F114HA). In vitro analyses using F114HA transfected MiaPaCa-2 and T3M4 cells showed enhanced proliferation, motility and increased accumulation of cells in the G2/M phase with apoptosis resistance, a feature associated with cancer stem cells (CSCs). This was supported by enrichment of ALDH + CSCs along with enhanced drug-resistance. Mechanistically, we demonstrate a novel function of MUC16-Cter that promotes nuclear translocation of JAK2 resulting in phosphorylation of Histone-3 up-regulating stemness-specific genes LMO2 and NANOG. Jak2 dependence was demonstrated using Jak2 +/+ and Jak2 −/− cells. Using eGFP-Luciferase labeled cells, we demonstrate enhanced tumorigenic and metastatic potential of MUC16-Cter in vivo. Taken together, we demonstrate that MUC16-Cter mediated enrichment of CSCs is partly responsible for tumorigenic, metastatic and drug-resistant properties of PC cells.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: not found
          • Article: not found

          Mucins in cancer: protection and control of the cell surface.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Computational modeling of pancreatic cancer reveals kinetics of metastasis suggesting optimum treatment strategies.

            Pancreatic cancer is a leading cause of cancer-related death, largely due to metastatic dissemination. We investigated pancreatic cancer progression by utilizing a mathematical framework of metastasis formation together with comprehensive data of 228 patients, 101 of whom had autopsies. We found that pancreatic cancer growth is initially exponential. After estimating the rates of pancreatic cancer growth and dissemination, we determined that patients likely harbor metastases at diagnosis and predicted the number and size distribution of metastases as well as patient survival. These findings were validated in an independent database. Finally, we analyzed the effects of different treatment modalities, finding that therapies that efficiently reduce the growth rate of cells earlier in the course of treatment appear to be superior to upfront tumor resection. These predictions can be validated in the clinic. Our interdisciplinary approach provides insights into the dynamics of pancreatic cancer metastasis and identifies optimum therapeutic interventions. Copyright © 2012 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma.

              Specific populations of highly tumorigenic cells are thought to exist in many human tumors, including pancreatic adenocarcinoma. However, the clinical significance of these tumor-initiating (ie, cancer stem) cells remains unclear. Aldehyde dehydrogenase (ALDH) activity can identify tumor-initiating cells and normal stem cells from several human tissues. We examined the prognostic significance and functional features of ALDH expression in pancreatic adenocarcinoma. ALDH expression was analyzed by immunohistochemistry in 269 primary surgical specimens of pancreatic adenocarcinoma and examined for association with clinical outcomes and in paired primary tumors and metastatic lesions from eight pancreatic cancer patients who had participated in a rapid autopsy program. The clonogenic growth potential of ALDH-positive pancreatic adenocarcinoma cells was assessed in vitro by a colony formation assay and by tumor growth in immunodeficient mice (10-14 mice per group). Mesenchymal features of ALDH-positive pancreatic tumor cells were examined by using quantitative reverse transcription-polymerase chain reaction and an in vitro cell invasion assay. Gene expression levels and the invasive potential of ADLH-positive pancreatic cancer cells relative to the bulk cell population were examined by reverse transcription-polymerase chain reaction and an in vitro invasion assays, respectively. All statistical tests were two-sided. ALDH-positive tumor cells were detected in 90 of the 269 primary surgical specimens, and their presence was associated with worse survival (median survival for patients with ALDH-positive vs ALDH-negative tumors: 14 vs 18 months, hazard ratio of death = 1.28, 95% confidence interval = 1.02 to 1.68, P = .05). Six (75%) of the eight patients with matched primary and metastatic tumor samples had ALDH-negative primary tumors, and in four (67%) of these six patients, the matched metastatic lesions (located in liver and lung) contained ALDH-positive cells. ALDH-positive cells were approximately five- to 11-fold more clonogenic in vitro and in vivo compared with unsorted or ALHD-negative cells, expressed genes consistent with a mesenchymal state, and had in vitro migratory and invasive potentials that were threefold greater than those of unsorted cells. ALDH expression marks pancreatic cancer cells that have stem cell and mesenchymal features. The enhanced clonogenic growth and migratory properties of ALDH-positive pancreatic cancer cells suggest that they play a key role in the development of metastatic disease that negatively affects the overall survival of patients with pancreatic adenocarcinoma.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                20 March 2015
                21 January 2015
                : 6
                : 8
                : 5772-5787
                Affiliations
                1 Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
                2 Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE, USA
                3 Department of Pathology, University of Nebraska Medical Center, Omaha, NE, USA
                4 Buffett Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA
                Author notes
                Correspondence to: Surinder K. Batra, sbatra@ 123456unmc.edu
                Article
                10.18632/oncotarget.3308
                4467401
                25691062
                6c24a40f-d352-41ba-9bf5-63c815ba3572
                Copyright: © 2015 Das et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 13 December 2014
                : 2 January 2015
                Categories
                Research Paper

                Oncology & Radiotherapy
                mucin 16 (muc16),ca125,pancreatic cancer,jak2,cancer stem cells
                Oncology & Radiotherapy
                mucin 16 (muc16), ca125, pancreatic cancer, jak2, cancer stem cells

                Comments

                Comment on this article