55
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The RNA Helicases AtMTR4 and HEN2 Target Specific Subsets of Nuclear Transcripts for Degradation by the Nuclear Exosome in Arabidopsis thaliana

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The RNA exosome is the major 3′-5′ RNA degradation machine of eukaryotic cells and participates in processing, surveillance and turnover of both nuclear and cytoplasmic RNA. In both yeast and human, all nuclear functions of the exosome require the RNA helicase MTR4. We show that the Arabidopsis core exosome can associate with two related RNA helicases, AtMTR4 and HEN2. Reciprocal co-immunoprecipitation shows that each of the RNA helicases co-purifies with the exosome core complex and with distinct sets of specific proteins. While AtMTR4 is a predominantly nucleolar protein, HEN2 is located in the nucleoplasm and appears to be excluded from nucleoli. We have previously shown that the major role of AtMTR4 is the degradation of rRNA precursors and rRNA maturation by-products. Here, we demonstrate that HEN2 is involved in the degradation of a large number of polyadenylated nuclear exosome substrates such as snoRNA and miRNA precursors, incompletely spliced mRNAs, and spurious transcripts produced from pseudogenes and intergenic regions. Only a weak accumulation of these exosome substrate targets is observed in mtr4 mutants, suggesting that MTR4 can contribute, but plays rather a minor role for the degradation of non-ribosomal RNAs and cryptic transcripts in Arabidopsis. Consistently, transgene post-transcriptional gene silencing (PTGS) is marginally affected in mtr4 mutants, but increased in hen2 mutants, suggesting that it is mostly the nucleoplasmic exosome that degrades aberrant transgene RNAs to limit their entry in the PTGS pathway. Interestingly, HEN2 is conserved throughout green algae, mosses and land plants but absent from metazoans and other eukaryotic lineages. Our data indicate that, in contrast to human and yeast, plants have two functionally specialized RNA helicases that assist the exosome in the degradation of specific nucleolar and nucleoplasmic RNA populations, respectively.

          Author Summary

          Cells rely on a number of RNA degradation pathways to ensure correct and timely processing and turnover of both coding and non-coding RNAs. Another important function of RNA degradation is the rapid elimination of misprocessed RNA species, maturation by-products, and nonfunctional RNAs that are frequently produced by pervasive transcription. The main 3′-5′ RNA degradation machine in eukaryotic cells is the exosome, which is activated by cofactors such as RNA helicases. In yeast and human, processing, turnover and surveillance of all nuclear exosome targets depend on a single RNA helicase, MTR4. We show here that the Arabidopsis exosome complex can associate with two related RNA helicases, MTR4 and HEN2. MTR4 and HEN2 reside in nucleolar and nucleoplasmic compartments, respectively, and target different subsets of nuclear RNA substrates for degradation by the exosome. The presence of both MTR4 and HEN2 homologues in green algae, mosses and land plants suggest that the functional duality of exosome-associated RNA helicases is evolutionarily conserved in the entire green lineage. The emerging picture is that, despite a high degree of sequence conservation, intracellular distribution, activities and functions of exosome cofactors vary considerably among different eukaryotes.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis.

          The complete sequence of the Arabidopsis thaliana genome revealed thousands of previously unsuspected genes, many of which cannot be ascribed even putative functions. One of the largest and most enigmatic gene families discovered in this way is characterized by tandem arrays of pentatricopeptide repeats (PPRs). We describe a detailed bioinformatic analysis of 441 members of the Arabidopsis PPR family plus genomic and genetic data on the expression (microarray data), localization (green fluorescent protein and red fluorescent protein fusions), and general function (insertion mutants and RNA binding assays) of many family members. The basic picture that arises from these studies is that PPR proteins play constitutive, often essential roles in mitochondria and chloroplasts, probably via binding to organellar transcripts. These results confirm, but massively extend, the very sparse observations previously obtained from detailed characterization of individual mutants in other organisms.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            CDD: conserved domains and protein three-dimensional structure

            CDD, the Conserved Domain Database, is part of NCBI’s Entrez query and retrieval system and is also accessible via http://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. CDD provides annotation of protein sequences with the location of conserved domain footprints and functional sites inferred from these footprints. Pre-computed annotation is available via Entrez, and interactive search services accept single protein or nucleotide queries, as well as batch submissions of protein query sequences, utilizing RPS-BLAST to rapidly identify putative matches. CDD incorporates several protein domain and full-length protein model collections, and maintains an active curation effort that aims at providing fine grained classifications for major and well-characterized protein domain families, as supported by available protein three-dimensional (3D) structure and the published literature. To this date, the majority of protein 3D structures are represented by models tracked by CDD, and CDD curators are characterizing novel families that emerge from protein structure determination efforts.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cryptic pol II transcripts are degraded by a nuclear quality control pathway involving a new poly(A) polymerase.

              Since detection of an RNA molecule is the major criterion to define transcriptional activity, the fraction of the genome that is expressed is generally considered to parallel the complexity of the transcriptome. We show here that several supposedly silent intergenic regions in the genome of S. cerevisiae are actually transcribed by RNA polymerase II, suggesting that the expressed fraction of the genome is higher than anticipated. Surprisingly, however, RNAs originating from these regions are rapidly degraded by the combined action of the exosome and a new poly(A) polymerase activity that is defined by the Trf4 protein and one of two RNA binding proteins, Air1p or Air2p. We show that such a polyadenylation-assisted degradation mechanism is also responsible for the degradation of several Pol I and Pol III transcripts. Our data strongly support the existence of a posttranscriptional quality control mechanism limiting inappropriate expression of genetic information.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                August 2014
                21 August 2014
                : 10
                : 8
                : e1004564
                Affiliations
                [1 ]Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
                [2 ]Platforme Protéomique Strasbourg-Esplanade, Centre National de la Recherche Scientifique, FRC 1589, Université de Strasbourg, Strasbourg, France
                [3 ]Unité de Recherche en Génomique Végétale (URGV), UMR INRA 1165, Université d'Evry Val d'Essonne, Saclay Plant Sciences, ERL CNRS 8196, Evry, France
                [4 ]UMR AgroParisTech-INRA MIA 518, Paris, France
                [5 ]Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Versailles, France
                University of California Riverside, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: HL DG HV MLMM. Performed the experiments: HL HZ FMS JC LK PH NB DG HV SB. Analyzed the data: HL HZ JC LK PH CB VB MLMM SA HV DG. Wrote the paper: HL HV DG.

                Article
                PGENETICS-D-13-02075
                10.1371/journal.pgen.1004564
                4140647
                25144737
                6c287029-c757-4fbb-8d9b-280294fac868
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 2 August 2013
                : 28 June 2014
                Page count
                Pages: 21
                Funding
                This work was funded by Centre National de la Recherche Scientifique (CNRS, France) and a INRA fellowship to CB. This work was realized in the frame of the LABEX (ANR-2010-LABX-36 to DG) and (ANR-2010-LABX-40 to HV) and benefits from funding from the state managed by the French National Research Agency as part of the programme d'Investissements d'avenir. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and life sciences
                Biochemistry
                RNA
                RNA processing
                RNA stability
                Nucleic Acids
                Cell Biology
                Molecular Cell Biology
                Genetics
                Epigenetics
                RNA interference
                Gene Expression
                Organisms
                Plants
                Brassica
                Arabidopsis Thaliana
                Research and Analysis Methods
                Model Organisms
                Plant and Algal Models

                Genetics
                Genetics

                Comments

                Comment on this article