25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Impact of Feet Callosities, Arm Posture, and Usage of Electrolyte Wipes on Body Composition by Bioelectrical Impedance Analysis in Morbidly Obese Adults

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: This study evaluated the impact of feet callosities, arm posture, and use of electrolyte wipes on body composition measurements by bioelectrical impedance analysis (BIA) in morbidly obese adults. Methods: 36 morbidly obese patients (13 males, aged 28-70 years, BMI 41.6 ± 4.3 kg/m<sup>2</sup>) with moderate/severe feet callosities participated in this study. Body composition (percent body fat (%BF)) was measured while fasting using multi-frequency BIA (InBody 720®), before and after removal of callosities, with and without InBody® electrolyte wipes and custom-built auxiliary pads (to assess arm posture impact). Results from BIA were compared to air displacement plethysmography (ADP, BodPod®). Results: Median %BF was significantly higher with auxiliary pads than without (50.1 (interquartile range 8.2) vs. 49.3 (interquartile range 9.1); p < 0.001), while no differences were found with callosity removal (49.3 (interquartile range 9.1) vs. 50.0 (interquartile range 7.9); NS) or use of wipes (49.6 (interquartile range 8.5) vs. 49.3 (interquartile range 9.1); NS). No differences in %BF were found between BIA and ADP (49.1 (IQR: 8.9) vs. 49.3 (IQR: 9.1); NS). Conclusion: Arm posture has a significant impact on %BF assessed by BIA, contrary to the presence of feet callosities and use of electrolyte wipes. Arm posture standardization during BIA for body composition assessment is, therefore, recommended.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Body-composition assessment via air-displacement plethysmography in adults and children: a review.

          Laboratory-based body-composition techniques include hydrostatic weighing (HW), dual-energy X-ray absorptiometry (DXA), measurement of total body water (TBW) by isotope dilution, measurement of total body potassium, and multicompartment models. Although these reference methods are used routinely, each has inherent practical limitations. Whole-body air-displacement plethysmography is a new practical alternative to these more traditional body-composition methods. We reviewed the principal findings from studies published between December 1995 and August 2001 that compared the BOD POD method (Life Measurement, Inc, Concord, CA) with reference methods and summarized factors contributing to the different study findings. The average of the study means indicates that the BOD POD and HW agree within 1% body fat (BF) for adults and children, whereas the BOD POD and DXA agree within 1% BF for adults and 2% BF for children. Few studies have compared the BOD POD with multicompartment models; those that have suggest a similar average underestimation of approximate 2-3% BF by both the BOD POD and HW. Individual variations between 2-compartment models compared with DXA and 4 -compartment models are partly attributable to deviations from the assumed chemical composition of the body. Wide variations among study means, -4.0% to 1.9% BF for BOD POD - HW and -3.0% to 1.7% BF for BOD POD - DXA, are likely due in part to differences in laboratory equipment, study design, and subject characteristics and in some cases to failure to follow the manufacturer's recommended protocol. Wide intersubject variations between methods are partly attributed to technical precision and biological error but to a large extent remain unexplained. On the basis of this review, future research goals are suggested.
            • Record: found
            • Abstract: found
            • Article: not found

            Assessing body composition with DXA and bioimpedance: effects of obesity, physical activity, and age.

            This study evaluated to what extent dual-energy X-ray absorptiometry (DXA) and two types of bioimpedance analysis (BIA) yield similar results for body fat mass (FM) in men and women with different levels of obesity and physical activity (PA). The study population consisted of 37-81-year-old Finnish people (82 men and 86 women). FM% was estimated using DXA (GE Lunar Prodigy) and two BIA devices (InBody (720) and Tanita BC 418 MA). Subjects were divided into normal, overweight, and obese groups on the basis of clinical cutoff points of BMI, and into low PA (LPA) and high PA (HPA) groups. Agreement between the devices was calculated by using the Bland-Altman analysis. Compared to DXA, both BIA devices provided on average 2-6% lower values for FM% in normal BMI men, in women in all BMI categories, and in both genders in both HPA and LPA groups. In obese men, the differences were smaller. The two BIA devices provided similar means for groups. Differences between the two BIA devices with increasing FM% were a result of the InBody (720) not including age in their algorithm for estimating body composition. BIA methods provided systematically lower values for FM than DXA. However, the differences depend on gender and body weight status pointing out the importance of considering these when identifying people with excess FM.
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical characteristics influencing bioelectrical impedance analysis measurements.

              Standardization of measurement conditions is essential for obtaining accurate, precise, and reproducible bioelectrical impedance analysis (BIA) data. Errors due to lack of measurement control are propagated in subsequent calculations of body composition and contribute to differences in predictive equations among investigators. Various individual and environmental factors have been shown to influence BIA. We review the factors that have been identified from the literature as being conditions requiring standardization both for healthy subjects and for those in a medical setting.

                Author and article information

                Journal
                OFA
                OFA
                Obes Facts
                10.1159/issn.1662-4025
                Obesity Facts
                S. Karger AG
                1662-4025
                1662-4033
                2015
                December 2015
                20 November 2015
                : 8
                : 6
                : 364-372
                Affiliations
                aDepartment of Public Health and General Practice, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; bObesity Research Group, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway; cCenter for Obesity Research, Department of Surgery, St. Olavs Hospital - Trondheim University Hospital, Trondheim, Norway; dDepartment of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
                Article
                442033 Obes Facts 2015;8:364-372
                10.1159/000442033
                5644794
                26584161
                6c2bc02e-c8e7-4405-b129-cee89fe2b6eb
                © 2015 S. Karger GmbH, Freiburg

                Open Access License: This is an Open Access article licensed under the terms of the Creative Commons Attribution-NonCommercial 3.0 Unported license (CC BY-NC) ( http://www.karger.com/OA-license), applicable to the online version of the article only. Distribution permitted for non-commercial purposes only. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 22 January 2015
                : 08 October 2015
                Page count
                Figures: 2, Tables: 2, References: 24, Pages: 9
                Categories
                Original Article

                Nutrition & Dietetics,Health & Social care,Public health
                Morbid obesity,Bioelectrical impedance,Body composition,Callosities,Fat mass,Standardization

                Comments

                Comment on this article

                Related Documents Log