33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      One cell, one love: a journal for microbial research

      editorial
      1 , # , 2 , 3 , 4 , 5 , 6 , 1 , *
      Microbial Cell
      Shared Science Publishers OG
      microbes, microbial research, unicellular organism, microbiome, cell death, apoptosis, autophagy, aging, neurodegeneration

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          INTRODUCTION With their broad utility for biotechnology, their continuous menace as infectious pathogens, and as an integral part of our bodies (intestinal flora), unicellular organisms remain in the focus of global research. This interest has been further stimulated by the challenge to counteract the emergence of multi-resistant microbes, as well as by the recent advances in establishing unicellular organisms as valid models for human diseases. It is our great pleasure to launch the inaugural issue of Microbial Cell (MIC), an international, open-access, peer-reviewed journal dedicated to microbial research. MIC is committed to the publication of articles that deal with the characterization of unicellular organisms (or multicellular microorganisms) in their response to internal and external stimuli and/or in the context of human health and disease. Thus, MIC covers heterogeneous topics in diverse areas ranging from microbial and general cell biology to molecular signaling, disease modeling and pathogen targeting. MIC’s Editorial Board counts with world-class leaders in a wide variety of fields, including microbiology, aging, evolution, biotechnology, ecology, biochemistry, infection biology, and human pathophysiology. We are convinced that MIC will appeal to readers from a broad scientific and medical background, including basic researchers, microbiologists, clinicians, educators and - we hope - policy makers as well as to any interested individual. THE PAST, PRESENT AND FUTURE OF MICROBIAL RESEARCH Over the last decades microorganisms have been catapulted to the limelight of the most diverse scientific and medical areas and ultimately to the minds of the general public. Overall, four main lines of interest shape the direct influence of microbes on our lives: (i) their relevance for a plethora of infectious diseases, (ii) their participation in symbiotic interactions (in particular in our gut microbiota), (iii) their biotechnological applications and resulting economic impact, and (iv) their emanating role as model organisms for human physiology and pathology. Infection diseases were the most common causes of death prior to the emergence of antibiotics and the general improvement of sanitation and preventive medicine. As a constant threat to individual health, domesticated animals, and agricultural productivity, microbes were omnipresent in everybody’s life and had a deep impact at both the social and economic levels, sometimes with pandemic proportions (cf. the periodic episodes of Black Plague or the Irish Potato Famine). The discovery and study of infectious microbes as well as the consequent implementation of hygienic standards and the application of antibiotic chemotherapy thus were instrumental for the rise of average life expectancy in the 20th century, at least in the Western world. However, microorganisms have resulted to be much more adaptive than previously suspected and have struck back by developing resistance to antibiotics at an ever-accelerating pace. Non-restrictive policies regulating anti-microbial chemotherapy, the resulting inflationary use of antibiotics in patient care and animal farming, as well as the increased mobility, have potentiated the development and spread of super-resistant microbial strains. As a result, we are confronted with a situation, in which microbial infections may advance to become the new old challenge for medical research. Only in the USA, for instance, 23,000 people die every year from the direct consequence of infections with antibiotic-resistant bacteria 1. Especially in developing countries, the risk of bacterial and fungal infections is often comparable to that of diseases mediated by unicellular parasites. For instance, malaria (in 2010: approximately 219 million cases and 660.000 deaths 2), leishmaniosis (approximately 12 million persons currently infected worldwide with annual casualties in the range of 20.000-30.000 3), or trypanosomiasis (estimated 7-8 million and 30.000 cases worldwide for American and African trypanosomiasis, respectively 4 5), all represent major socioeconomic burdens that directly and indirectly take a heavy toll on human life. Beyond the threat by external microorganisms, we are exposed to and actually depend on our resident microbial population. The gut microbiota is comprised of a broad and dynamic repertoire of microorganisms in which bacteria predominate but Archaea and Eukarya are also present 6. In fact, our enteric flora can be considered as a virtual organ 7 8 in which the number of microbial cells is approximately ten times larger than the quantity of eukaryotic cells contained in the whole body 9, with important ecological, metabolic and physiological implications. The genetic variability among commensal microbial cells (the microbiome) outnumbers that of the human genome by more than two logs 10. Also, the metabolic activity of the intestinal microbiota significantly contributes to and largely affects the whole-body metabolism 11. This tight and intricate host-microbe interplay reflects a symbiotic relationship, in which the microbial commensals contribute to the host’s energy harvesting, the defense against infectious threats, as well as to the regulation of the immune system 12 13. Furthermore, internal microbes directly affect inflammatory and neoplastic disease mechanisms, condition our propensity to develop obesity and metabolic syndrome, have a neurobehavioural impact, and influence therapeutic responses including at the level of anticancer treatments 14 15 16 17 18 19 20 21. Importantly, most of these host-microbe interactions remain to be deciphered in their molecular details and many microbial populations contributing to our gut microbiome have yet to be described and characterized. We surmise that microbial research will not only improve our understanding of this complex ecosystem but also explore strategies for exploiting our flora for therapeutic use. The benefits that we derive from microbial activities reach far beyond the direct cooperative relationship with intestinal microbes. For instance, microorganisms are involved in maintaining the ecological flux, e.g. through recycling vital elements like carbon and nitrogen, as elements at the base of the food chain (particularly in aquatic ecosystems), or as pathogens for population control. Even beyond historic records, mankind has discovered and technically refined the employment of microbial organisms for the production of essential food items like bread or cheese and beverages like beer or wine. This ancient biotechnological use of microorganisms has left a deep, millennium-long social, economic and cultural footprint. In modern biotechnology, genetic engineering of microbes allows for the efficient manufacturing of natural and synthetic products (including multiple drugs and hormones), and industrial microbiology takes advantage of unicellular organisms in large-scale processes such as wastewater treatment or industrial fermentation 22. The evolutionary conservation of the principal biochemical and cell biological pathways in microbes coupled to their vast technical advantages (from rapid growth to inexpensive accessibility) has made them essential model organisms and basic research tools to explore the fundamental processes of human physiology and pathology. In fact, many crucial mechanisms at the foundation of human cellular processes were first discovered in unicellular organisms, as it is the case for the cell division cycle, elemental cell death pathways, autophagy, vesicular fusion, and mitochondrial biogenesis 23 24 25 26 27 28 29 30 31 32 33 34 35 36. Furthermore, pathological scenarios central to human health are successfully modeled in unicellular organisms. For instance, it is currently estimated that half of the genes and drugs known today to causally influence aging in multicellular animals are the result of initial studies perfomed in yeast 37 38 39 40 41 42 43 44. Heterologous expression of human proteins involved in different diseases are instrumental for the causal and molecular understanding of detrimental afflictions such as cancer and neurodegenerative disorders like Parkinson’s or Alzheimer’s disease 45 46 47 48. Certainly, the use of unicellular organisms with the purpose of modeling molecular mechanisms and disorders in humans demands the subsequent validation of the results in higher eukaryotes. Nevertheless, the high degree of conservation of basic biological processes underscores the immense potential of microbial cells as model organisms that may well explore the fundamental principles of human health and disease. A UNIVERSALLY ACCESSIBLE PLATFORM FOR HIGH-QUALITY PUBLICATIONS IN THE MICROBIAL FIELD MIC approaches this vast thematic heterogeneity by publishing a whole array of peer-reviewed papers, including primary research articles and reports, as well as different formats of review and commentary articles. Given the global impact of microbial research, MIC makes all articles freely available on the Internet to be read, downloaded, stored, printed, copied, and distributed by any interested individual in accordance to the journal’s commitment to the principles of open-access publishing. This commitment reflects our conviction that science in general and research in particular are building elements of our modern societies that provide medical and technical improvements as well as cultural, educational and social benefits. Being responsible for generating, conserving and diffusing this public good, the research community needs to make full use of the World Wide Web, for the benefit of both the scholarly and general readership. Indeed, the global access to the Internet has fundamentally changed the way information in general and research literature in particular can be exchanged. In contrast to print publishing - where each transaction from the publisher to the reader involves significant cost - online publishing allows the deposition of a single copy that can be accessed by anyone around the world without (or with little) additional costs. Assessing universal online accessibility to scientific knowledge allows for the quick and unrestricted use of published data by researchers and interested individuals, maximizes the visibility of the authors’ works, and promotes the availability of the latest research results for educational purposes. MIC authors - who retain full copyright of their work - must therefore agree to make their articles legally available for reuse with no permissions required or fees raised as long as they and the journal are appropriately cited as the original source. By pursuing an open access approach and the universal accessibility to scientific knowledge, we support one of the essential values of science: the free exchange of ideas. MIC believes that the publication of a research work and the consequent dissemination of results and thoughts among scientists and readers is a fundamental part of doing research. Consequently, any costs generated from publication should be considered as one of the basic expenses to be covered by research grants or by the authors’ institutions. However, it remains a fact that due to economic restraints in developing countries, the vast majority of biomedical publications are signed by authors from the financially most potent nations. This also applies to the microbial research field, even though the developing countries often suffer microbiological threats that cost or endanger millions of lives per year. Following these concerns, MIC has implemented a waiver program (DevResearch Program) that - depending on the applicant’s situation - partly or completely exempts the corresponding authors based in low-income countries from paying publication fees. The goal of this policy is to facilitate and promote scientific authorship from developing countries. Of note, microbial research combines both the possibility to work with affordable model systems and direct medical applicability to microbial-derived health issues. That is why - by means of its DevResearch Program - MIC also intends to promote the implementation of this research field into projects, programs and policies that may contribute to sustainable development at the scientific and social levels. CONCLUDING REMARKS Altogether, it is evident that microbial research is enormously heterogeneous with a wide and growing impact on our lives at the academic, economic, and social levels. MIC emerges with the intention to serve as a publishing forum that supports and enfolds this diversity as it provides a unique, high-quality and universally accessible source of information and inspiration. It is time to be or fall in love with microbial research and we are convinced that you will do so through MIC - as a reader or a contributor.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models.

          Alpha-synuclein (alphaSyn) misfolding is associated with several devastating neurodegenerative disorders, including Parkinson's disease (PD). In yeast cells and in neurons alphaSyn accumulation is cytotoxic, but little is known about its normal function or pathobiology. The earliest defect following alphaSyn expression in yeast was a block in endoplasmic reticulum (ER)-to-Golgi vesicular trafficking. In a genomewide screen, the largest class of toxicity modifiers were proteins functioning at this same step, including the Rab guanosine triphosphatase Ypt1p, which associated with cytoplasmic alphaSyn inclusions. Elevated expression of Rab1, the mammalian YPT1 homolog, protected against alphaSyn-induced dopaminergic neuron loss in animal models of PD. Thus, synucleinopathies may result from disruptions in basic cellular functions that interface with the unique biology of particular neurons to make them especially vulnerable.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A central role for cohesins in sister chromatid cohesion, formation of axial elements, and recombination during yeast meiosis.

            A multisubunit complex, called cohesin, containing Smc1p, Smc3p, Scc1p, and Scc3p, is required for sister chromatid cohesion in mitotic cells. We show here that Smc3p and a meiotic version of Scc1p called Rec8p are required for cohesion between sister chromatids, for formation of axial elements, for reciprocal recombination, and for preventing hyperresection of double-strand breaks during meiosis. Both Rec8p and Smc3p colocalize with chromosome cores independently of synapsis during prophase I and largely disappear from chromosome arms after pachytene but persist in the neighborhood of centromeres until the onset of anaphase II. The eukaryotic cell's cohesion apparatus is required both for the repair of recombinogenic lesions and for chromosome segregation and therefore appears to lie at the heart of the meiotic process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway.

              Cells of a Saccharomyces cerevisiae mutant that is temperature-sensitive for secretion and cell surface growth become dense during incubation at the non-permissive temperature (37 degrees C). This property allows the selection of additional secretory mutants by sedimentation of mutagenized cells on a Ludox density gradient. Colonies derived from dense cells are screened for conditional growth and secretion of invertase and acid phosphatase. The sec mutant strains that accumulate an abnormally large intracellular pool of invertase at 37 degrees C (188 mutant clones) fall into 23 complementation groups, and the distribution of mutant alleles suggests that more complementation groups could be found. Bud emergence and incorporation of a plasma membrane sulfate permease activity stop quickly after a shift to 37 degrees C. Many of the mutants are thermoreversible; upon return to the permissive temperature (25 degrees C) the accumulated invertase is secreted. Electron microscopy of sec mutant cells reveals, with one exception, the temperature-dependent accumulation of membrane-enclosed secretory organelles. We suggest that these structures represent intermediates in a pathway in which secretion and plasma membrane assembly are colinear.
                Bookmark

                Author and article information

                Journal
                Microb Cell
                Microb Cell
                Microb Cell
                Microb Cell
                Microbial Cell
                Shared Science Publishers OG
                2311-2638
                06 January 2014
                06 January 2014
                : 1
                : 1
                : 1-5
                Affiliations
                [1 ]Institute of Molecular Biosciences, University of Graz, Graz, Austria
                [2 ]INSERM, U848, Villejuif, France
                [3 ]Metabolomics Platform, Institut Gustave Roussy, Villejuif, France
                [4 ]Centre de Recherche des Cordeliers, Paris, France
                [5 ]Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
                [6 ]Université Paris Descartes, Paris 5, Paris, France
                Author notes

                Conflict of interest: The authors declare no conflict of interest.

                Please cite this article as: Didac Carmona-Gutierrez, Guido Kroemer and Frank Madeo (2014). One cell, one love: a journal for microbial research. Microbial Cell 1(1): 1-5. doi: 10.15698/mic2014.01.118

                Article
                MIC0174E118
                10.15698/mic2014.01.118
                5349160
                6c2ffb80-2410-42a7-ae4c-6dc26b041739
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial Share Alike License, which permits the copy and distribution of the unmodified material in any medium or format, provided the original work is properly cited and the material not used for commercial purposes. If the material is remixed, transformed or build upon, the modified material may not be distributed.

                History
                : 22 December 2013
                : 02 January 2014
                Funding
                FM is grateful to the FWF for grants LIPOTOX, I1000, P23490-B12 and P24381-B20.
                Categories
                Microbiology
                Applied Microbiology
                Molecular Biology
                Genetics

                microbes,microbial research,unicellular organism,microbiome,cell death,apoptosis,autophagy,aging,neurodegeneration

                Comments

                Comment on this article