59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knowledge-based Fragment Binding Prediction

      research-article
      1 , 1 , 2 , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Target-based drug discovery must assess many drug-like compounds for potential activity. Focusing on low-molecular-weight compounds (fragments) can dramatically reduce the chemical search space. However, approaches for determining protein-fragment interactions have limitations. Experimental assays are time-consuming, expensive, and not always applicable. At the same time, computational approaches using physics-based methods have limited accuracy. With increasing high-resolution structural data for protein-ligand complexes, there is now an opportunity for data-driven approaches to fragment binding prediction. We present FragFEATURE, a machine learning approach to predict small molecule fragments preferred by a target protein structure. We first create a knowledge base of protein structural environments annotated with the small molecule substructures they bind. These substructures have low-molecular weight and serve as a proxy for fragments. FragFEATURE then compares the structural environments within a target protein to those in the knowledge base to retrieve statistically preferred fragments. It merges information across diverse ligands with shared substructures to generate predictions. Our results demonstrate FragFEATURE's ability to rediscover fragments corresponding to the ligand bound with 74% precision and 82% recall on average. For many protein targets, it identifies high scoring fragments that are substructures of known inhibitors. FragFEATURE thus predicts fragments that can serve as inputs to fragment-based drug design or serve as refinement criteria for creating target-specific compound libraries for experimental or computational screening.

          Author Summary

          In drug discovery, the goal is to identify new compounds to alter the behavior of a protein implicated in disease. With the very large number of small molecules to test, researchers have increasingly studied fragments (compounds with a small number of atoms) because there are fewer possibilities to evaluate and they can be used to identify larger compounds. Computational tools can efficiently assess if a fragment will bind a protein target of interest. Given the large number of structures available for protein-small molecule complexes, we present in this study a data-driven computational method for fragment binding prediction called FragFEATURE. FragFEATURE predicts fragments preferred by a protein structure using a knowledge base of all previously observed protein-fragment interactions. Comparison to previous observations enables it to determine if a query structure is likely to bind particular fragments. For numerous protein structures bound to small molecules, FragFEATURE predicted fragments matching the bound entity. For multiple proteins, it also predicted fragments matching drugs known to inhibit the proteins. These fragments can therefore lead us to promising drug-like compounds to study further using computational tools or experimental resources.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Specificity and mechanism of action of some commonly used protein kinase inhibitors.

          The specificities of 28 commercially available compounds reported to be relatively selective inhibitors of particular serine/threonine-specific protein kinases have been examined against a large panel of protein kinases. The compounds KT 5720, Rottlerin and quercetin were found to inhibit many protein kinases, sometimes much more potently than their presumed targets, and conclusions drawn from their use in cell-based experiments are likely to be erroneous. Ro 318220 and related bisindoylmaleimides, as well as H89, HA1077 and Y 27632, were more selective inhibitors, but still inhibited two or more protein kinases with similar potency. LY 294002 was found to inhibit casein kinase-2 with similar potency to phosphoinositide (phosphatidylinositol) 3-kinase. The compounds with the most impressive selectivity profiles were KN62, PD 98059, U0126, PD 184352, rapamycin, wortmannin, SB 203580 and SB 202190. U0126 and PD 184352, like PD 98059, were found to block the mitogen-activated protein kinase (MAPK) cascade in cell-based assays by preventing the activation of MAPK kinase (MKK1), and not by inhibiting MKK1 activity directly. Apart from rapamycin and PD 184352, even the most selective inhibitors affected at least one additional protein kinase. Our results demonstrate that the specificities of protein kinase inhibitors cannot be assessed simply by studying their effect on kinases that are closely related in primary structure. We propose guidelines for the use of protein kinase inhibitors in cell-based assays.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Poly(ADP-ribose): novel functions for an old molecule.

            The addition to proteins of the negatively charged polymer of ADP-ribose (PAR), which is synthesized by PAR polymerases (PARPs) from NAD(+), is a unique post-translational modification. It regulates not only cell survival and cell-death programmes, but also an increasing number of other biological functions with which novel members of the PARP family have been associated. These functions include transcriptional regulation, telomere cohesion and mitotic spindle formation during cell division, intracellular trafficking and energy metabolism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enumeration of 166 billion organic small molecules in the chemical universe database GDB-17.

              Drug molecules consist of a few tens of atoms connected by covalent bonds. How many such molecules are possible in total and what is their structure? This question is of pressing interest in medicinal chemistry to help solve the problems of drug potency, selectivity, and toxicity and reduce attrition rates by pointing to new molecular series. To better define the unknown chemical space, we have enumerated 166.4 billion molecules of up to 17 atoms of C, N, O, S, and halogens forming the chemical universe database GDB-17, covering a size range containing many drugs and typical for lead compounds. GDB-17 contains millions of isomers of known drugs, including analogs with high shape similarity to the parent drug. Compared to known molecules in PubChem, GDB-17 molecules are much richer in nonaromatic heterocycles, quaternary centers, and stereoisomers, densely populate the third dimension in shape space, and represent many more scaffold types.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2014
                24 April 2014
                : 10
                : 4
                : e1003589
                Affiliations
                [1 ]Department of Bioengineering, Stanford University, Stanford, California, United States of America
                [2 ]Department of Genetics, Stanford University, Stanford, California, United States of America
                Bar Ilan University, Israel
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: GWT RBA. Performed the experiments: GWT. Analyzed the data: GWT RBA. Contributed reagents/materials/analysis tools: GWT. Wrote the paper: GWT RBA.

                Article
                PCOMPBIOL-D-13-01895
                10.1371/journal.pcbi.1003589
                3998881
                24762971
                6c30b1ca-5e31-4fa4-9efe-80552f23e5c1
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 30 October 2013
                : 11 March 2014
                Page count
                Pages: 15
                Funding
                This work was supported by NIH LM05652 and GM72970. GWT also acknowledges support from Stanford BioX and Siebel Scholars. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Proteins
                Protein Structure
                Computational Biology
                Molecular Biology
                Macromolecular Structure Analysis
                Computer and Information Sciences
                Information Technology
                Databases
                Physical Sciences
                Chemistry
                Computational Chemistry
                Mathematics
                Applied Mathematics
                Algorithms
                Research and Analysis Methods
                Research Design
                Empirical Methods

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article