16
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Open-source approaches for the repurposing of existing or failed candidate drugs: learning from and applying the lessons across diseases

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Repurposing has the objective of targeting existing drugs and failed, abandoned, or yet-to-be-pursued clinical candidates to new disease areas. The open-source model permits for the sharing of data, resources, compounds, clinical molecules, small libraries, and screening platforms to cost-effectively advance old drugs and/or candidates into clinical re-development. Clearly, at the core of drug-repurposing activities is collaboration, in many cases progressing beyond the open sharing of resources, technology, and intellectual property, to the sharing of facilities and joint program development to foster drug-repurposing human-capacity development. A variety of initiatives under way for drug repurposing, including those targeting rare and neglected diseases, are discussed in this review and provide insight into the stakeholders engaged in drug-repurposing discovery, the models of collaboration used, the intellectual property-management policies crafted, and human capacity developed. In the case of neglected tropical diseases, it is suggested that the development of human capital be a central aspect of drug-repurposing programs. Open-source models can support human-capital development through collaborative data generation, open compound access, open and collaborative screening, preclinical and possibly clinical studies. Given the urgency of drug development for neglected tropical diseases, the review suggests elements from current repurposing programs be extended to the neglected tropical diseases arena.

          Related collections

          Most cited references 52

          • Record: found
          • Abstract: found
          • Article: not found

          Minocycline inhibits cytochrome c release and delays progression of amyotrophic lateral sclerosis in mice.

          Minocycline mediates neuroprotection in experimental models of neurodegeneration. It inhibits the activity of caspase-1, caspase-3, inducible form of nitric oxide synthetase (iNOS) and p38 mitogen-activated protein kinase (MAPK). Although minocycline does not directly inhibit these enzymes, the effects may result from interference with upstream mechanisms resulting in their secondary activation. Because the above-mentioned factors are important in amyotrophic lateral sclerosis (ALS), we tested minocycline in mice with ALS. Here we report that minocycline delays disease onset and extends survival in ALS mice. Given the broad efficacy of minocycline, understanding its mechanisms of action is of great importance. We find that minocycline inhibits mitochondrial permeability-transition-mediated cytochrome c release. Minocycline-mediated inhibition of cytochrome c release is demonstrated in vivo, in cells, and in isolated mitochondria. Understanding the mechanism of action of minocycline will assist in the development and testing of more powerful and effective analogues. Because of the safety record of minocycline, and its ability to penetrate the blood-brain barrier, this drug may be a novel therapy for ALS.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics.

            Small-molecule compounds approved for use as drugs may be "repurposed" for new indications and studied to determine the mechanisms of their beneficial and adverse effects. A comprehensive collection of all small-molecule drugs approved for human use would be invaluable for systematic repurposing across human diseases, particularly for rare and neglected diseases, for which the cost and time required for development of a new chemical entity are often prohibitive. Previous efforts to build such a comprehensive collection have been limited by the complexities, redundancies, and semantic inconsistencies of drug naming within and among regulatory agencies worldwide; a lack of clear conceptualization of what constitutes a drug; and a lack of access to physical samples. We report here the creation of a definitive, complete, and nonredundant list of all approved molecular entities as a freely available electronic resource and a physical collection of small molecules amenable to high-throughput screening.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              PDTD: a web-accessible protein database for drug target identification

              Background Target identification is important for modern drug discovery. With the advances in the development of molecular docking, potential binding proteins may be discovered by docking a small molecule to a repository of proteins with three-dimensional (3D) structures. To complete this task, a reverse docking program and a drug target database with 3D structures are necessary. To this end, we have developed a web server tool, TarFisDock (Target Fishing Docking) , which has been used widely by others. Recently, we have constructed a protein target database, Potential Drug Target Database (PDTD), and have integrated PDTD with TarFisDock. This combination aims to assist target identification and validation. Description PDTD is a web-accessible protein database for in silico target identification. It currently contains >1100 protein entries with 3D structures presented in the Protein Data Bank. The data are extracted from the literatures and several online databases such as TTD, DrugBank and Thomson Pharma. The database covers diverse information of >830 known or potential drug targets, including protein and active sites structures in both PDB and mol2 formats, related diseases, biological functions as well as associated regulating (signaling) pathways. Each target is categorized by both nosology and biochemical function. PDTD supports keyword search function, such as PDB ID, target name, and disease name. Data set generated by PDTD can be viewed with the plug-in of molecular visualization tools and also can be downloaded freely. Remarkably, PDTD is specially designed for target identification. In conjunction with TarFisDock, PDTD can be used to identify binding proteins for small molecules. The results can be downloaded in the form of mol2 file with the binding pose of the probe compound and a list of potential binding targets according to their ranking scores. Conclusion PDTD serves as a comprehensive and unique repository of drug targets. Integrated with TarFisDock, PDTD is a useful resource to identify binding proteins for active compounds or existing drugs. Its potential applications include in silico drug target identification, virtual screening, and the discovery of the secondary effects of an old drug (i.e. new pharmacological usage) or an existing target (i.e. new pharmacological or toxic relevance), thus it may be a valuable platform for the pharmaceutical researchers. PDTD is available online at .
                Bookmark

                Author and article information

                Journal
                Drug Des Devel Ther
                Drug Des Devel Ther
                Drug Design, Development and Therapy
                Dove Medical Press
                1177-8881
                2013
                08 August 2013
                : 7
                : 753-766
                Affiliations
                Department of Management Sciences, University of Waterloo, Waterloo, ON, Canada
                Author notes
                Correspondence: Minna Allarakhia, Department of Management Sciences, University of Waterloo, 200 University, Avenue West, Waterloo, ON N2L 3G1, Canada, Tel +1 647 988 9843, Email amallara@ 123456uwaterloo.ca
                Article
                dddt-7-753
                10.2147/DDDT.S46289
                3743608
                23966771
                © 2013 Allarakhia, publisher and licensee Dove Medical Press Ltd

                This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited.

                Categories
                Review

                Comments

                Comment on this article