2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Identification of influenza A nucleoprotein body domain residues essential for viral RNA expression expose antiviral target

      research-article
      1 , 2 , 1 , 3 , 1 ,
      Virology Journal
      BioMed Central
      Influenza, Virus, RNA, Nucleoprotein

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Influenza A virus is controlled with yearly vaccination while emerging global pandemics are kept at bay with antiviral medications. Unfortunately, influenza A viruses have emerged resistance to approved influenza antivirals. Accordingly, there is an urgent need for novel antivirals to combat emerging influenza A viruses resistant to current treatments. Conserved viral proteins are ideal targets because conserved protein domains are present in most, if not all, influenza subtypes, and are presumed less prone to evolve viable resistant versions. The threat of an antiviral resistant influenza pandemic justifies our study to identify and characterize antiviral targets within influenza proteins that are highly conserved. Influenza A nucleoprotein (NP) is highly conserved and plays essential roles throughout the viral lifecycle, including viral RNA synthesis.

          Methods

          Using NP crystal structure, we targeted accessible amino acids for substitution. To characterize the NP proteins, reconstituted viral ribonucleoproteins (vRNPs) were expressed in 293 T cells, RNA was isolated, and reverse transcription – quantitative PCR (RT-qPCR) was employed to assess viral RNA expressed from reconstituted vRNPs. Location was confirmed using cellular fractionation and western blot, along with observation of NP-GFP fusion proteins. Nucleic acid binding, oligomerization, and vRNP formation, were each assessed with native gel electrophoresis.

          Results

          Here we report characterization of an accessible and conserved five amino acid region within the NP body domain that plays a redundant but essential role in viral RNA synthesis. Our data demonstrate substitutions in this domain did not alter NP localization, oligomerization, or ability to bind nucleic acids, yet resulted in a defect in viral RNA expression. To define this region further, single and double amino acid substitutions were constructed and investigated. All NP single substitutions were functional, suggesting redundancy, yet different combinations of two amino acid substitutions resulted in a significant defect in RNA expression, confirming these accessible amino acids in the NP body domain play an important role in viral RNA synthesis.

          Conclusions

          The identified conserved and accessible NP body domain represents a viable antiviral target to counter influenza replication and this research will contribute to the well-informed design of novel therapies to combat emerging influenza viruses.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Emergence and pandemic potential of swine-origin H1N1 influenza virus.

          Influenza viruses cause annual epidemics and occasional pandemics that have claimed the lives of millions. The emergence of new strains will continue to pose challenges to public health and the scientific communities. A prime example is the recent emergence of swine-origin H1N1 viruses that have transmitted to and spread among humans, resulting in outbreaks internationally. Efforts to control these outbreaks and real-time monitoring of the evolution of this virus should provide us with invaluable information to direct infectious disease control programmes and to improve understanding of the factors that determine viral pathogenicity and/or transmissibility.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit.

            The influenza virus polymerase, a heterotrimer composed of three subunits, PA, PB1 and PB2, is responsible for replication and transcription of the eight separate segments of the viral RNA genome in the nuclei of infected cells. The polymerase synthesizes viral messenger RNAs using short capped primers derived from cellular transcripts by a unique 'cap-snatching' mechanism. The PB2 subunit binds the 5' cap of host pre-mRNAs, which are subsequently cleaved after 10-13 nucleotides by the viral endonuclease, hitherto thought to reside in the PB2 (ref. 5) or PB1 (ref. 2) subunits. Here we describe biochemical and structural studies showing that the amino-terminal 209 residues of the PA subunit contain the endonuclease active site. We show that this domain has intrinsic RNA and DNA endonuclease activity that is strongly activated by manganese ions, matching observations reported for the endonuclease activity of the intact trimeric polymerase. Furthermore, this activity is inhibited by 2,4-dioxo-4-phenylbutanoic acid, a known inhibitor of the influenza endonuclease. The crystal structure of the domain reveals a structural core closely resembling resolvases and type II restriction endonucleases. The active site comprises a histidine and a cluster of three acidic residues, conserved in all influenza viruses, which bind two manganese ions in a configuration similar to other two-metal-dependent endonucleases. Two active site residues have previously been shown to specifically eliminate the polymerase endonuclease activity when mutated. These results will facilitate the optimisation of endonuclease inhibitors as potential new anti-influenza drugs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Resistant influenza A viruses in children treated with oseltamivir: descriptive study.

              Oseltamivir is an effective inhibitor of influenza virus neuraminidase. Although viruses resistant to oseltamivir emerge less frequently than those resistant to amantadine or rimantadine, information on oseltamivir-resistant viruses arising during clinical use of the drug in children is limited. Our aim was to investigate oseltamivir resistance in a group of children treated for influenza. We analysed influenza A viruses (H3N2) collected from 50 children before and during treatment with oseltamivir. We sequenced the genes for neuraminidase and haemagglutinin and studied the mutant neuraminidases for their sensitivity to oseltamivir carboxylate. We found neuraminidase mutations in viruses from nine patients (18%), six of whom had mutations at position 292 (Arg292Lys) and two at position 119 (Glu119Val), which are known to confer resistance to neuraminidase inhibitors. We also identified another mutation (Asn294Ser) in one patient. Sensitivity testing to oseltamivir carboxylate revealed that the neuraminidases of viruses that have an Arg292Lys, Glu119Val, or Asn294Ser mutation were about 10(4)-10(5)-fold, 500-fold, or 300-fold more resistant than their pretreatment neuraminidases, respectively. Oseltamivir-resistant viruses were first detected at day 4 of treatment and on each successive day of the study. More than 10(3) infectious units per mL of virus were detected in some of the patients who did not shed drug-resistant viruses, even after 5 days of treatment. Oseltamivir-resistant mutants in children being treated for influenza with oseltamivir arise more frequently than previously reported. Furthermore, children can be a source of viral transmission, even after 5 days of treatment with oseltamivir.
                Bookmark

                Author and article information

                Contributors
                lnewcomb@csusb.edu
                Journal
                Virol J
                Virol. J
                Virology Journal
                BioMed Central (London )
                1743-422X
                7 February 2017
                7 February 2017
                2017
                : 14
                : 22
                Affiliations
                [1 ]ISNI 0000 0001 2169 7773, GRID grid.253565.2, Department of Biology, , California State University San Bernardino, ; San Bernardino, CA USA
                [2 ]ISNI 0000 0004 0421 8357, GRID grid.410425.6, , Present Address: Irell & Manella Graduate School of Biological Sciences, City of Hope, ; Duarte, CA USA
                [3 ]ISNI 0000 0004 1936 7531, GRID grid.429997.8, , Present Address: Tufts University School of Medicine, ; Boston, MA USA
                Article
                694
                10.1186/s12985-017-0694-8
                5294902
                28173821
                6c45b39b-0b89-445e-bade-840987b89b79
                © The Author(s). 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 9 September 2016
                : 30 January 2017
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/100000057, National Institute of General Medical Sciences;
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Microbiology & Virology
                influenza,virus,rna,nucleoprotein
                Microbiology & Virology
                influenza, virus, rna, nucleoprotein

                Comments

                Comment on this article