10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The unfolded-protein-response sensor IRE-1α regulates the function of CD8α+ dendritic cells.

      Nature immunology
      Animals, Antigen Presentation, immunology, Antigens, CD8, metabolism, Cross-Priming, DNA-Binding Proteins, Dendritic Cells, Endoplasmic Reticulum, Endoribonucleases, Feedback, Physiological, physiology, Homeostasis, Immunoblotting, Immunohistochemistry, Mice, Mice, Inbred C57BL, Mice, Knockout, Microscopy, Electron, Oligonucleotide Array Sequence Analysis, Protein Unfolding, Protein-Serine-Threonine Kinases, Reverse Transcriptase Polymerase Chain Reaction, Transcription Factors, Unfolded Protein Response

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The role of the unfolded protein response (UPR) and endoplasmic reticulum (ER) stress in homeostasis of the immune system is incompletely understood. Here we found that dendritic cells (DCs) constitutively activated the UPR sensor IRE-1α and its target, the transcription factor XBP-1, in the absence of ER stress. Loss of XBP-1 in CD11c+ cells led to defects in phenotype, ER homeostasis and antigen presentation by CD8α+ conventional DCs, yet the closely related CD11b+ DCs were unaffected. Whereas the dysregulated ER in XBP-1-deficient DCs resulted from loss of XBP-1 transcriptional activity, the phenotypic and functional defects resulted from regulated IRE-1α-dependent degradation (RIDD) of mRNAs, including those encoding CD18 integrins and components of the major histocompatibility complex (MHC) class I machinery. Thus, a precisely regulated feedback circuit involving IRE-1α and XBP-1 controls the homeostasis of CD8α+ conventional DCs.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Systems Biology of Seasonal Influenza Vaccination in Humans

          We used a systems biological approach to study innate and adaptive responses to influenza vaccination in humans, during 3 consecutive influenza seasons. Healthy adults were vaccinated with inactivated (TIV) or live attenuated (LAIV) influenza vaccines. TIV induced greater antibody titers and enhanced numbers of plasmablasts than LAIV. In TIV vaccinees, early molecular signatures correlated with, and accurately predicted, later antibody titers in two independent trials. Interestingly, the expression of Calcium/calmodulin-dependent kinase IV (CamkIV) at day 3 was inversely correlated with later antibody titers. Vaccination of CamkIV −/− mice with TIV induced enhanced antigen-specific antibody titers, demonstrating an unappreciated role for CaMKIV in the regulation of antibody responses. Thus systems approaches can predict immunogenicity, and reveal new mechanistic insights about vaccines.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            TLR activation of the transcription factor XBP1 regulates innate immune responses in macrophages.

            Sensors of pathogens, such as Toll-like receptors (TLRs), detect microbes to activate transcriptional programs that orchestrate adaptive responses to specific insults. Here we report that TLR4 and TLR2 specifically activated the endoplasmic reticulum (ER) stress sensor kinase IRE1alpha and its downstream target, the transcription factor XBP1. Previously described ER-stress target genes of XBP1 were not induced by TLR signaling. Instead, TLR-activated XBP1 was required for optimal and sustained production of proinflammatory cytokines in macrophages. Consistent with that finding, activation of IRE1alpha by ER stress acted in synergy with TLR activation for cytokine production. Moreover, XBP1 deficiency resulted in a much greater bacterial burden in mice infected with the TLR2-activating human intracellular pathogen Francisella tularensis. Our findings identify an unsuspected critical function for XBP1 in mammalian host defenses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Plasma cell differentiation requires the transcription factor XBP-1.

              Considerable progress has been made in identifying the transcription factors involved in the early specification of the B-lymphocyte lineage. However, little is known about factors that control the transition of mature activated B cells to antibody-secreting plasma cells. Here we report that the transcription factor XBP-1 is required for the generation of plasma cells. XBP-1 transcripts were rapidly upregulated in vitro by stimuli that induce plasma-cell differentiation, and were found at high levels in plasma cells from rheumatoid synovium. When introduced into B-lineage cells, XBP-1 initiated plasma-cell differentiation. Mouse lymphoid chimaeras deficient in XBP-1 possessed normal numbers of activated B lymphocytes that proliferated, secreted cytokines and formed normal germinal centres. However, they secreted very little immunoglobulin of any isotype and failed to control infection with the B-cell-dependent polyoma virus, because plasma cells were markedly absent. XBP-1 is the only transcription factor known to be selectively and specifically required for the terminal differentiation of B lymphocytes to plasma cells.
                Bookmark

                Author and article information

                Comments

                Comment on this article