50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potent CD8 + T-Cell Immunogenicity in Humans of a Novel Heterosubtypic Influenza A Vaccine, MVA−NP+M1

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background.  Influenza A viruses cause occasional pandemics and frequent epidemics. Licensed influenza vaccines that induce high antibody titers to the highly polymorphic viral surface antigen hemagglutinin must be re-formulated and readministered annually. A vaccine providing protective immunity to the highly conserved internal antigens could provide longer-lasting protection against multiple influenza subtypes.

          Methods.  We prepared a Modified Vaccinia virus Ankara (MVA) vector encoding nucleoprotein and matrix protein 1 (MVA−NP+M1) and conducted a phase I clinical trial in healthy adults.

          Results.  The vaccine was generally safe and well tolerated, with significantly fewer local side effects after intramuscular rather than intradermal administration. Systemic side effects increased at the higher dose in both frequency and severity, with 5 out of 8 volunteers experiencing severe nausea/vomiting, malaise, or rigors. Ex vivo T-cell responses to NP and M1 measured by IFN-γ ELISPOT assay were significantly increased after vaccination (prevaccination median of 123 spot-forming units/million peripheral blood mononuclear cells, postvaccination peak response median 339, 443, and 1443 in low-dose intradermal, low-dose intramuscular, and high-dose intramuscular groups, respectively), and the majority of the antigen-specific T cells were CD8 +.

          Conclusions.  We conclude that the vaccine was both safe and remarkably immunogenic, leading to frequencies of responding T cells that appear to be much higher than those induced by any other influenza vaccination approach. Further studies will be required to find the optimum dose and to assess whether the increased T-cell response to conserved influenza proteins results in protection from influenza disease.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Cytotoxic T-cell immunity to influenza.

          In a study designed to determine whether cytotoxic T lymphocytes contribute to immunity against influenza virus infection, we inoculated 63 volunteers intranasally with live unattenuated influenza A/Munich/1/79 virus. Over the next seven days clinical observations were made, and the amount of virus shed was measured. The protective effects of preinfection serum antibody and of cytotoxic T-cell immunity against influenza A virus were assessed for each participant. All subjects with demonstrable T-cell responses cleared virus effectively. This response was observed in volunteers in all age groups, including those born after 1956, who did not have specific antibody and hence had probably not been exposed to this subtype of influenza A virus before. Cytotoxic T cells show cross-reactivity in their recognition of the different subtypes of influenza A virus, in contrast to the antibody response that is specific for each virus subtype. We conclude that cytotoxic T cells play a part in recovery from influenza virus infection.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recombinant modified vaccinia virus Ankara expressing antigen 85A boosts BCG-primed and naturally acquired antimycobacterial immunity in humans.

            Protective immunity against Mycobacterium tuberculosis depends on the generation of a T(H)1-type cellular immune response, characterized by the secretion of interferon-gamma (IFN-gamma) from antigen-specific T cells. The induction of potent cellular immune responses by vaccination in humans has proven difficult. Recombinant viral vectors, especially poxviruses and adenoviruses, are particularly effective at boosting previously primed CD4(+) and CD8(+) T-cell responses against a number of intracellular pathogens in animal studies. In the first phase 1 study of any candidate subunit vaccine against tuberculosis, recombinant modified vaccinia virus Ankara (MVA) expressing antigen 85A (MVA85A) was found to induce high levels of antigen-specific IFN-gamma-secreting T cells when used alone in bacille Calmette-Guerin (BCG)-naive healthy volunteers. In volunteers who had been vaccinated 0.5-38 years previously with BCG, substantially higher levels of antigen-specific IFN-gamma-secreting T cells were induced, and at 24 weeks after vaccination these levels were 5-30 times greater than in vaccinees administered a single BCG vaccination. Boosting vaccinations with MVA85A could offer a practical and efficient strategy for enhancing and prolonging antimycobacterial immunity in tuberculosis-endemic areas.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein.

              Influenza epidemic and pandemic strains cannot be predicted with certainty. Current vaccines elicit antibodies effective against specific strains, but new strategies are urgently needed for protection against unexpected strains. DNA vaccines encoding conserved antigens protect animals against diverse subtypes, but their potency needs improvement. We tested DNA prime-recombinant adenoviral boost immunization to nucleoprotein (NP). Strong antibody and T cell responses were induced. Protection against challenge was T cell-dependent and substantially more potent than DNA vaccination alone. Importantly, vaccination protected against lethal challenge with highly pathogenic H5N1 virus. Thus, gene-based vaccination with NP may contribute to protective immunity against diverse influenza viruses through its ability to stimulate cellular immunity.
                Bookmark

                Author and article information

                Journal
                Clin Infect Dis
                cid
                cid
                Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America
                Oxford University Press
                1058-4838
                1537-6591
                01 January 2011
                01 January 2011
                : 52
                : 1
                : 1-7
                Affiliations
                The Jenner Institute, Oxford University, Oxford, United Kingdom
                Author notes
                Correspondence: Dr Sarah C. Gilbert, Jenner Institute, Old Road Campus Research Building, Oxford, OX3 7DQ, UK ( sarah.gilbert@ 123456ndm.ox.ac.uk ).
                Article
                10.1093/cid/ciq015
                3060888
                21148512
                6c4b088c-4696-4842-8c9c-a7ad7bb32558
                © The Author 2011. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. 2011. All rights reserved.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/2.0/uk/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Categories
                Articles and Commentaries

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article