21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of osteopontin inhibition on radiosensitivity of MDA-MB-231 breast cancer cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Osteopontin (OPN) is a secreted glycophosphoprotein that is overexpressed in various tumors, and high levels of OPN have been associated with poor prognosis of cancer patients. In patients with head and neck cancer, high OPN plasma levels have been associated with poor prognosis following radiotherapy. Since little is known about the relationship between OPN expression and radiosensitivity, we investigated the cellular and radiation induced effects of OPN siRNA in human MDA-MB-231 breast cancer cells.

          Methods

          MDA-MB-231 cells were transfected with OPN-specific siRNAs and irradiated after 24 h. To verify the OPN knockdown, we measured the OPN mRNA and protein levels using qRT-PCR and Western blot analysis. Furthermore, the functional effects of OPN siRNAs were studied by assays to assess clonogenic survival, migration and induction of apoptosis.

          Results

          Treatment of MDA-MB-231 cells with OPN siRNAs resulted in an 80% decrease in the OPN mRNA level and in a decrease in extracellular OPN protein level. Transfection reduced clonogenic survival to 42% (p = 0.008), decreased the migration rate to 60% (p = 0.15) and increased apoptosis from 0.3% to 1.7% (p = 0.04). Combination of OPN siRNA and irradiation at 2 Gy resulted in a further reduction of clonogenic survival to 27% (p < 0.001), decreased the migration rate to 40% (p = 0.03) and increased apoptosis to 4% (p < 0.005). Furthermore, OPN knockdown caused a weak radiosensitization with an enhancement factor of 1.5 at 6 Gy (p = 0.09) and a dose modifying factor (DMF 10) of 1.1.

          Conclusion

          Our results suggest that an OPN knockdown improves radiobiological effects in MDA-MB-231 cells. Therefore, OPN seems to be an attractive target to improve the effectiveness of radiotherapy.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation.

          If cancer arises and is maintained by a small population of cancer-initiating cells within every tumor, understanding how these cells react to cancer treatment will facilitate improvement of cancer treatment in the future. Cancer-initiating cells can now be prospectively isolated from breast cancer cell lines and tumor samples and propagated as mammospheres in vitro under serum-free conditions. CD24(-/low)/CD44+ cancer-initiating cells were isolated from MCF-7 and MDA-MB-231 breast cancer monolayer cultures and propagated as mammospheres. Their response to radiation was investigated by assaying clonogenic survival and by measuring reactive oxygen species (ROS) levels, phosphorylation of the replacement histone H2AX, CD44 levels, CD24 levels, and Notch-1 activation using flow cytometry. All statistical tests were two-sided. Cancer-initiating cells were more resistant to radiation than cells grown as monolayer cultures (MCF-7: monolayer cultures, mean surviving fraction at 2 Gy [SF(2Gy)] = 0.2, versus mammospheres, mean SF(2Gy) = 0.46, difference = 0.26, 95% confidence interval [CI] = 0.05 to 0.47; P = .026; MDA-MB-231: monolayer cultures, mean SF(2Gy) = 0.5, versus mammospheres, mean SF(2Gy) = 0.69, difference = 0.19, 95% CI = -0.07 to 0.45; P = .09). Levels of ROS increased in both mammospheres and monolayer cultures after irradiation with a single dose of 10 Gy but were lower in mammospheres than in monolayer cultures (MCF-7 monolayer cultures: 0 Gy, mean = 1.0, versus 10 Gy, mean = 3.32, difference = 2.32, 95% CI = 0.67 to 3.98; P = .026; mammospheres: 0 Gy, mean = 0.58, versus 10 Gy, mean = 1.46, difference = 0.88, 95% CI = 0.20 to 1.56; P = .031); phosphorylation of H2AX increased in irradiated monolayer cultures, but no change was observed in mammospheres. Fractionated doses of irradiation increased activation of Notch-1 (untreated, mean = 10.7, versus treated, mean = 15.1, difference = 4.4, 95% CI = 2.7 to 6.1, P = .002) and the percentage of the cancer stem/initiating cells in the nonadherent cell population of MCF-7 monolayer cultures (untreated, mean = 3.52%, versus treated, mean = 7.5%, difference = 3.98%, 95% CI = 1.67% to 6.25%, P = .009). Breast cancer-initiating cells are a relatively radioresistant subpopulation of breast cancer cells and increase in numbers after short courses of fractionated irradiation. These findings offer a possible mechanism for the accelerated repopulation of tumor cells observed during gaps in radiotherapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Osteopontin: role in cell signaling and cancer progression.

            Cell migration and degradation of the extracellular matrix (ECM) are crucial steps in tumor progression. Several matrix-degrading proteases, including matrix metalloproteases, are highly regulated by growth factors, cytokines and ECM proteins. Osteopontin (OPN), a chemokine-like, calcified ECM-associated protein, plays a crucial role in determining the metastatic potential of various cancers. Since its first identification in bone, the multifaceted roles of OPN have been an area of intense investigation. Extensive research has elucidated the pivotal role of OPN in regulating the cell signaling that controls tumor progression and metastasis. This review focuses on recent advances in understanding the functional role of the OPN-induced signaling pathway in the regulation of cell migration and tumor progression and the implications for identifying novel targets for cancer therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Systemic endocrine instigation of indolent tumor growth requires osteopontin.

              The effects of primary tumors on the host systemic environment and resulting contributions of the host to tumor growth are poorly understood. Here, we find that human breast carcinomas instigate the growth of otherwise-indolent tumor cells, micrometastases, and human tumor surgical specimens located at distant anatomical sites. This systemic instigation is accompanied by incorporation of bone-marrow cells (BMCs) into the stroma of the distant, once-indolent tumors. We find that BMCs of hosts bearing instigating tumors are functionally activated prior to their mobilization; hence, when coinjected with indolent cells, these activated BMCs mimic the systemic effects imparted by instigating tumors. Secretion of osteopontin by instigating tumors is necessary for BMC activation and the subsequent outgrowth of the distant otherwise-indolent tumors. These results reveal that outgrowth of indolent tumors can be governed on a systemic level by endocrine factors released by certain instigating tumors, and hold important experimental and therapeutic implications.
                Bookmark

                Author and article information

                Journal
                Radiat Oncol
                Radiation Oncology (London, England)
                BioMed Central
                1748-717X
                2010
                17 September 2010
                : 5
                : 82
                Affiliations
                [1 ]Department of Radiotherapy, Martin-Luther-University Halle-Wittenberg, Dryanderstr.4, 06110 Halle, Germany
                [2 ]Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str.40, 06120 Halle, Germany
                [3 ]Institute of Pathology, Dresden University of Technology, Fetscherstr.74, 01307 Dresden, Germany
                Article
                1748-717X-5-82
                10.1186/1748-717X-5-82
                2949679
                20849637
                6c4fe9ee-2938-4d44-b923-306f7ca7936d
                Copyright ©2010 Hahnel et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 July 2010
                : 17 September 2010
                Categories
                Research

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article