2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Estrogen-active nonylphenols from an isomer-specific viewpoint: a systematic numbering system and future trends

      , ,
      Analytical and Bioanalytical Chemistry
      Springer Nature

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references13

          • Record: found
          • Abstract: found
          • Article: not found

          4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants.

          Anaerobically treated sewage sludge was found to contain extraordinarily high concentrations of 4-nonylphenol, a metabolite derived from nonionic surfactants of the nonylphenol polyethoxylate type. Concentrations in activated sewage sludge, in mixed primary and secondary sludge, and in aerobically stabilized sludge were substantially lower, suggesting that the formation of 4-nonylphenol is favored under mesophilic anaerobic conditions. Because 4-nonylphenol may be highly toxic to aquatic life, further research is needed on the fate of 4-nonylphenol after sludge is disposed of in the environment.
            • Record: found
            • Abstract: found
            • Article: not found

            Endocrine disrupting nonylphenols are ubiquitous in food.

            4-Nonylphenols (NPs) are common products of biodegradation of a widely used group of nonionic surfactants, the nonylphenol ethoxylates (NPEs). These compounds are known to be persistent, toxic, and estrogen active. There is a worldwide scientific and public discussion on the potential consequences of human long term dietary exposure to such endocrine disrupters. Despite numerous determinations of NPs in environmental samples no systematical reports exist relating to concentrations of NPs in food. We analyzed NPs in 60 different foodstuff commercially available in Germany. The results indicate that NPs are ubiquitous in food. The concentrations of NPs on a fresh weight basis varied between 0.1 and 19.4 microg/kg regardless of the fat content of the foodstuff. Based on data on German food consumption rates and these first analyses of NPs in food, the daily intake for an adult was calculated to be 7.5 microg/day NPs. For infants exclusively fed with breast milk or infant formulas daily intakes of 0.2 microg/day and 1.4 microg/day NPs, respectively, can be estimated.
              • Record: found
              • Abstract: found
              • Article: not found

              Structural features of alkylphenolic chemicals associated with estrogenic activity.

              The ability of certain man-made chemicals to mimic the effects of natural steroid hormones and their potential to disrupt the delicate balance of the endocrine system in animals are of increasing concern. The growing list of reported hormone-mimics includes the alkylphenolic (AP) compounds, a small number of which have been reported to be weakly estrogenic. In their most basic form, APs are composed of an alkyl group, which can vary in size, branching, and position, joined to a phenolic ring. The aim of this project was to identify the important structural features responsible for the estrogenic activity of AP chemicals. This was achieved by incubating APs with different structural features in a medium containing a previously described estrogen-inducible strain of yeast (Saccharomyces cerevisiae) expressing the human estrogen receptor and comparing their activity spectrophotometrically by the resulting color change of the medium. The results were compared to the effects of the main natural estrogen 17beta-estradiol. The data indicate that both the position (para > meta > ortho) and branching (tertiary > secondary = normal) of the alkyl group affect estrogenicity. Optimal estrogenic activity requires a single tertiary branched alkyl group composed of between 6 and 8 carbons located at the para position on an otherwise unhindered phenol ring. The results are discussed in relation to the purity and composition of the chemicals tested.

                Author and article information

                Journal
                Analytical and Bioanalytical Chemistry
                Anal Bioanal Chem
                Springer Nature
                1618-2642
                1618-2650
                December 29 2005
                December 10 2005
                : 384
                : 2
                : 542-546
                Article
                10.1007/s00216-005-0181-8
                6c56a616-553b-4fb0-819d-faf9fe1e44e4
                © 2005
                History

                Comments

                Comment on this article

                Related Documents Log