73
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The elements of seasonal adaptations in insects

      The Canadian Entomologist
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references229

          • Record: found
          • Abstract: found
          • Article: not found

          Terrestrial insects along elevation gradients: species and community responses to altitude.

          The literature on the response of insect species to the changing environments experienced along altitudinal gradients is diverse and widely dispersed. There is a growing awareness that such responses may serve as analogues for climate warming effects occurring at a particular fixed altitude or latitude over time. This review seeks, therefore, to synthesise information on the responses of insects and allied groups to increasing altitude and provide a platform for future research. It focuses on those functional aspects of insect biology that show positive or negative reaction to altitudinal changes but avoids emphasising adaptation to high altitude per se. Reactions can be direct, with insect characteristics or performance responding to changing environmental parameters, or they can be indirect and mediated through the insect's interaction with other organisms. These organisms include the host plant in the case of herbivorous insects, and also competitor species, specific parasitoids, predators and pathogens. The manner in which these various factors individually and collectively influence the morphology, behaviour, ecophysiology, growth and development, survival, reproduction, and spatial distribution of insect species is considered in detail. Resultant patterns in the abundance of individual species populations and of community species richness are examined. Attempts are made throughout to provide mechanistic explanations of trends and to place each topic, where appropriate, into the broader theoretical context by appropriate reference to key literature. The paper concludes by considering how montane insect species will respond to climate warming.
            • Record: found
            • Abstract: not found
            • Article: not found

            Ecological effects of perturbation by drought in flowing waters

            P. Lake (2003)
              • Record: found
              • Abstract: found
              • Article: not found

              Plasticity in life-history traits.

              We describe the impact of recent life-history plasticity theory on insect studies, particularly on the interface between genetics and plasticity. We focus on the three-dimensional relationship between three key life-history traits: adult size (or mass), development time and growth rate, and the connections to life cycle regulation, host plant choice, and sexual selection in seasonal environments. The review covers fitness consequences of variation in size, development time and growth rate, and effects of sex, photoperiod, temperature, diet, and perceived mortality risk on these traits. We give special attention to evidence for adaptive plasticity in growth rates because of the important effects of such plasticity on the expected relationships between development time and adult size and, hence, on the use of life-history, fitness, and optimality approaches in ecology, as well as in genetics.

                Author and article information

                Journal
                applab
                The Canadian Entomologist
                Can Entomol
                Cambridge University Press (CUP)
                0008-347X
                1918-3240
                February 2007
                April 2012
                : 139
                : 01
                : 1-44
                Article
                10.4039/n06-048
                6c580cc2-6fdc-4d1c-a158-b9d508795dff
                © 2007
                History

                Comments

                Comment on this article

                Related Documents Log