3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Systems Vaccinology Approach Reveals the Mechanisms of Immunogenic Responses to Hantavax Vaccination in Humans

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hantavax is an inactivated vaccine for hemorrhagic fever with renal syndrome (HFRS). The immunogenic responses have not been elucidated yet. Here we conducted a cohort study in which 20 healthy subjects were administered four doses of Hantavax during 13-months period. Pre- and post- vaccinated peripheral blood mononuclear cells (PBMCs) and sera were analysed by transcriptomic and metabolomic profilings, respectively. Based on neutralizing antibody titers, subjects were subsequently classified into three groups; non responders (NRs), low responders (LRs) and high responders (HRs). Post vaccination differentially expressed genes (DEGs) associated with innate immunity and cytokine pathways were highly upregulated. DEG analysis revealed a significant induction of CD69 expression in the HRs. High resolution metabolomics (HRM) analysis showed that correlated to the antibody response, cholesteryl nitrolinoleate, octanoyl-carnitine, tyrosine, ubiquinone-9, and benzoate were significantly elevated in HRs, while chenodeoxycholic acid and methyl palmitate were upregulated in NRs and LRs, compared with HRs. Additionally, gene-metabolite interaction revealed upregulated gene-metabolite couplings in, folate biosynthesis, nicotinate and nicotinamide, arachidonic acid, thiamine and pyrimidine metabolism in a dose dependent manner in HR group. Collectively, our data provide new insight into the underlying mechanisms of the Hantavax-mediated immunogenicity in humans.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans.

          A major challenge in vaccinology is to prospectively determine vaccine efficacy. Here we have used a systems biology approach to identify early gene 'signatures' that predicted immune responses in humans vaccinated with yellow fever vaccine YF-17D. Vaccination induced genes that regulate virus innate sensing and type I interferon production. Computational analyses identified a gene signature, including complement protein C1qB and eukaryotic translation initiation factor 2 alpha kinase 4-an orchestrator of the integrated stress response-that correlated with and predicted YF-17D CD8(+) T cell responses with up to 90% accuracy in an independent, blinded trial. A distinct signature, including B cell growth factor TNFRS17, predicted the neutralizing antibody response with up to 100% accuracy. These data highlight the utility of systems biology approaches in predicting vaccine efficacy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acids and immune function.

            A deficiency of dietary protein or amino acids has long been known to impair immune function and increase the susceptibility of animals and humans to infectious disease. However, only in the past 15 years have the underlying cellular and molecular mechanisms begun to unfold. Protein malnutrition reduces concentrations of most amino acids in plasma. Findings from recent studies indicate an important role for amino acids in immune responses by regulating: (1) the activation of T lymphocytes, B lymphocytes, natural killer cells and macrophages; (2) cellular redox state, gene expression and lymphocyte proliferation; and (3) the production of antibodies, cytokines and other cytotoxic substances. Increasing evidence shows that dietary supplementation of specific amino acids to animals and humans with malnutrition and infectious disease enhances the immune status, thereby reducing morbidity and mortality. Arginine, glutamine and cysteine precursors are the best prototypes. Because of a negative impact of imbalance and antagonism among amino acids on nutrient intake and utilisation, care should be exercised in developing effective strategies of enteral or parenteral provision for maximum health benefits. Such measures should be based on knowledge about the biochemistry and physiology of amino acids, their roles in immune responses, nutritional and pathological states of individuals and expected treatment outcomes. New knowledge about the metabolism of amino acids in leucocytes is critical for the development of effective means to prevent and treat immunodeficient diseases. These nutrients hold great promise in improving health and preventing infectious diseases in animals and humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD69: from activation marker to metabolic gatekeeper.

              CD69 is a membrane-bound, type II C-lectin receptor. It is a classical early marker of lymphocyte activation due to its rapid appearance on the surface of the plasma membrane after stimulation. CD69 is expressed by several subsets of tissue resident immune cells, including resident memory T (TRM) cells and gamma delta (γδ) T cells, and is therefore considered a marker of tissue retention. Recent evidence has revealed that CD69 regulates some specific functions of selected T-cell subsets, determining the migration-retention ratio as well as the acquisition of effector or regulatory phenotypes. Specifically, CD69 regulates the differentiation of regulatory T (Treg) cells as well as the secretion of IFN-γ, IL-17 and IL-22. The identification of putative CD69 ligands, such as Galectin-1 (Gal-1), suggests that CD69-induced signaling can be regulated not only during cognate contacts between T cells and antigen-presenting cells in lymphoid organs, but also in the periphery, where cytokines and other metabolites control the final outcome of the immune response. Here, we will discuss new aspects of the molecular signaling mediated by CD69, and its involvement in the metabolic reprogramming regulating TH-effector lineages and provide their ramifications and possible significance in homeostasis and pathological scenarios. This article is protected by copyright. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                yjhwang@korea.ac.kr
                wjkim@korea.ac.kr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                18 March 2019
                18 March 2019
                2019
                : 9
                : 4760
                Affiliations
                [1 ]ISNI 0000 0001 0840 2678, GRID grid.222754.4, Metabolomics Laboratory, , Korea University College of Pharmacy, ; Sejeong city, Republic of Korea
                [2 ]ISNI 0000 0001 0840 2678, GRID grid.222754.4, Department of Biomedical Sciences, , Korea University College of Medicine, ; Seoul, Republic of Korea
                [3 ]ISNI 0000 0001 0840 2678, GRID grid.222754.4, Department of Microbiology, , Korea University College of Medicine, ; Seoul, Republic of Korea
                [4 ]ISNI 0000 0001 0840 2678, GRID grid.222754.4, Division of Infectious Diseases, Department of Internal Medicine, , Korea University College of Medicine, ; Seoul, Republic of Korea
                Author information
                http://orcid.org/0000-0003-4348-2217
                http://orcid.org/0000-0002-4546-3880
                Article
                41205
                10.1038/s41598-019-41205-1
                6423257
                30886186
                6c8267ff-72e3-4f58-8070-1b283599b48b
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 July 2018
                : 27 February 2019
                Funding
                Funded by: FundRef https://doi.org/10.13039/501100003725, National Research Foundation of Korea (NRF);
                Award ID: NRF-2017R1A2B4003890
                Award ID: NRF-2017R1A2B4003890
                Award ID: NRF-2017R1A2B4003890
                Award ID: NRF-2017R1A2B4003890
                Award Recipient :
                Funded by: Green Cross Corporation, Republic of Korea
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                Uncategorized

                Comments

                Comment on this article