111
views
0
recommends
+1 Recommend
0 collections
    11
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antibodies Trap Tissue Migrating Helminth Larvae and Prevent Tissue Damage by Driving IL-4Rα-Independent Alternative Differentiation of Macrophages

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Approximately one-third of the world's population suffers from chronic helminth infections with no effective vaccines currently available. Antibodies and alternatively activated macrophages (AAM) form crucial components of protective immunity against challenge infections with intestinal helminths. However, the mechanisms by which antibodies target these large multi-cellular parasites remain obscure. Alternative activation of macrophages during helminth infection has been linked to signaling through the IL-4 receptor alpha chain (IL-4Rα), but the potential effects of antibodies on macrophage differentiation have not been explored. We demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae and prevent tissue necrosis following challenge infection with the natural murine parasite Heligmosomoides polygyrus bakeri ( Hp). Mice lacking antibodies (J H −/−) or activating Fc receptors (FcRγ −/−) harbored highly motile larvae, developed extensive tissue damage and accumulated less Arginase-1 expressing macrophages around the larvae. Moreover, Hp-specific antibodies induced FcRγ- and complement-dependent adherence of macrophages to larvae in vitro, resulting in complete larval immobilization. Antibodies together with helminth larvae reprogrammed macrophages to express wound-healing associated genes, including Arginase-1, and the Arginase-1 product L-ornithine directly impaired larval motility. Antibody-induced expression of Arginase-1 in vitro and in vivo occurred independently of IL-4Rα signaling. In summary, we present a novel IL-4Rα-independent mechanism of alternative macrophage activation that is antibody-dependent and which both mediates anti-helminth immunity and prevents tissue disruption caused by migrating larvae.

          Author Summary

          Intestinal helminths present a pressing problem in developing countries with approximately 2 billion people suffering from chronic infection. To date no successful vaccines are available and a detailed mechanistic understanding of anti-helminth immunity is urgently needed to improve strategies for prevention and therapy. Antibodies form a crucial component of protective immunity against challenge infections with intestinal helminths. However, the exact mechanisms by which antibodies target these large multi-cellular parasites have remained obscure. We now demonstrate that helminth-specific antibodies induce the rapid trapping of tissue migrating helminth larvae by activating phagocytes. In the absence of antibodies or their receptors, helminth-infected mice developed extensive tissue damage, revealing a novel role for antibodies in limiting parasite-caused tissue disruption. Furthermore, helminth-specific antibodies reprogrammed macrophages to express wound-healing factors such as the arginine-metabolizing enzyme Arginase-1. Interestingly, the Arginase-1 product L-ornithine directly impaired the motility of helminth larvae. In summary, our study provides detailed mechanistic insights into how antibodies can modulate phagocyte function to provide protection against a large multi-cellular parasite. Our findings suggest that novel anti-helminth vaccines should target the larval surface and activate wound-healing macrophages to provide rapid protection against tissue-disruptive larvae.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Local macrophage proliferation, rather than recruitment from the blood, is a signature of TH2 inflammation.

          A defining feature of inflammation is the accumulation of innate immune cells in the tissue that are thought to be recruited from the blood. We reveal that a distinct process exists in which tissue macrophages undergo rapid in situ proliferation in order to increase population density. This inflammatory mechanism occurred during T helper 2 (T(H)2)-related pathologies under the control of the archetypal T(H)2 cytokine interleukin-4 (IL-4) and was a fundamental component of T(H)2 inflammation because exogenous IL-4 was sufficient to drive accumulation of tissue macrophages through self-renewal. Thus, expansion of innate cells necessary for pathogen control or wound repair can occur without recruitment of potentially tissue-destructive inflammatory cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cutting edge: inflammatory responses can be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes.

            We have identified new activating receptors of the Ig superfamily expressed on human myeloid cells, called TREM (triggering receptor expressed on myeloid cells). TREM-1 is selectively expressed on blood neutrophils and a subset of monocytes and is up-regulated by bacterial LPS. Engagement of TREM-1 triggers secretion of IL-8, monocyte chemotactic protein-1, and TNF-alpha and induces neutrophil degranulation. Intracellularly, TREM-1 induces Ca2+ mobilization and tyrosine phosphorylation of extracellular signal-related kinase 1 (ERK1), ERK2 and phospholipase C-gamma. To mediate activation, TREM-1 associates with the transmembrane adapter molecule DAP12. Thus, TREM-1 mediates activation of neutrophil and monocytes, and may have a predominant role in inflammatory responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens.

              Toll-like receptor (TLR) signaling in macrophages is required for antipathogen responses, including the biosynthesis of nitric oxide from arginine, and is essential for immunity to Mycobacterium tuberculosis, Toxoplasma gondii and other intracellular pathogens. Here we report a 'loophole' in the TLR pathway that is advantageous to these pathogens. Intracellular pathogens induced expression of the arginine hydrolytic enzyme arginase 1 (Arg1) in mouse macrophages through the TLR pathway. In contrast to diseases dominated by T helper type 2 responses in which Arg1 expression is greatly increased by interleukin 4 and 13 signaling through the transcription factor STAT6, TLR-mediated Arg1 induction was independent of the STAT6 pathway. Specific elimination of Arg1 in macrophages favored host survival during T. gondii infection and decreased lung bacterial load during tuberculosis infection.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2013
                November 2013
                14 November 2013
                : 9
                : 11
                : e1003771
                Affiliations
                [1 ]Swiss Vaccine Research Institute and Global Health Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
                [2 ]Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
                [3 ]Institute of Animal Pathology, University of Bern, Bern, Switzerland
                [4 ]Center for Immunity and Inflammation, New Jersey Medical School, Newark, New Jersey, United States of America
                [5 ]Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
                NIAID/NIH, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: JEvB NLH. Performed the experiments: JEvB IM AP FC BV. Analyzed the data: JEvB NLH. Contributed reagents/materials/analysis tools: RG WCG JSV AS. Wrote the paper: JEvB NLH.

                Article
                PPATHOGENS-D-13-01662
                10.1371/journal.ppat.1003771
                3828184
                24244174
                6c9715b5-96dd-46dc-87b6-9b94de0ebc3e
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 24 June 2013
                : 2 October 2013
                Page count
                Pages: 15
                Funding
                This project was supported by the Swiss National Science Foundation (310030_133104). http://www.snf.ch/E/Pages/default.aspx NLH is additionally supported by the Swiss Vaccine Research Institute. http://www.swissvaccineresearchinstitute.ch/ The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article