12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      C3a Increases VEGF and Decreases PEDF mRNA Levels in Human Retinal Pigment Epithelial Cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Complement activation, specifically complement 3 (C3) activation and C3a generation, contributes to an imbalance between angiogenic stimulation by vascular endothelial growth factor (VEGF) and angiogenic inhibition by pigment epithelial derived factor (PEDF), leading to pathological angiogenesis. This study aimed to investigate the effects of C3a and small interfering RNA (siRNA) targeting C3 on the levels of VEGF and PEDF mRNAs in human retinal pigment epithelial (RPE) cells. ARPE-19 cells were cultured in the presence of exogenous C3a at 0.1  μM and 0.3  μM C3a for 24, 48, and 72 hours. 0.1 pmol/ μL duplexes of siRNA targeting C3 were applied for C3a inhibition by transfecting ARPE-19 cells for 48 hours. RT-PCR was performed to examine the level of VEGF and PEDF mRNA. A random siRNA duplex was set for control siRNA. Results demonstrated that exogenous C3a significantly upregulated VEGF and downregulated PEDF mRNA levels in cultured ARPE-19 cells, and siRNA targeting C3 transfection reversed the above changes, significantly reducing VEGF and enhancing PEDF mRNAs level in ARPE-19 cells compared to the control. The present data provided evidence that reducing C3 activation can decreases VEGF and increase PEDF mRNA level in RPE and may serve as a potential therapy in pathological angiogenesis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Complement System Part II: Role in Immunity

          The complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5b–9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Updates of pathologic myopia.

            Complications from pathologic myopia are a major cause of visual impairment and blindness, especially in east Asia. The eyes with pathologic myopia may develop loss of the best-corrected vision due to various pathologies in the macula, peripheral retina and the optic nerve. Despite its importance, the definition of pathologic myopia has been inconsistent. The refractive error or axial length alone often does not adequately reflect the 'pathologic myopia'. Posterior staphyloma, which is a hallmark lesion of pathologic myopia, can occur also in non-highly myopic eyes. Recently a revised classification system for myopic maculopathy has been proposed to standardize the definition among epidemiological studies. In this META-PM (meta analyses of pathologic myopia) study classification, pathologic myopia was defined as the eyes having chorioretinal atrophy equal to or more severe than diffuse atrophy. In addition, the advent of new imaging technologies such as optical coherence tomography (OCT) and three dimensional magnetic resonance imaging (3D MRI) has enabled the detailed observation of various pathologies specific to pathologic myopia. New therapeutic approaches including intravitreal injections of anti-vascular endothelial growth factor agents and the advance of vitreoretinal surgeries have greatly improved the prognosis of patients with pathologic myopia. The purpose of this review article is to provide an update on topics related to the field of pathologic myopia, and to outline the remaining issues which need to be solved in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Neuroprotective Role of Vascular Endothelial Growth Factor: Signalling Mechanisms, Biological Function, and Therapeutic Potential

              Vascular endothelial growth factor (VEGF or VEGF-A) and its receptors play essential roles in the formation of blood vessels during embryogenesis and in disease. Most biological effects of VEGF are mediated via two receptor tyrosine kinases, VEGFR1 and VEGFR2, but specific VEGF isoforms also bind neuropilins (NP) 1 and 2, non-tyrosine kinase receptors originally identified as receptors for semaphorins, polypeptides with essential roles in neuronal patterning. There is abundant evidence that VEGF-A has neurotrophic and neuroprotective effects on neuronal and glial cells in culture and in vivo, and can stimulate the proliferation and survival of neural stem cells. VEGFR2 and NP1 are the major VEGF receptors expressed on neuronal cells and, while the mechanisms mediating neuroprotective effects of VEGF are not fully understood, VEGF stimulates several signalling events in neuronal cell types, including activation of phospholipase C-γ, Akt and ERK. Findings in diverse models of nerve damage and disease suggest that VEGF has therapeutic potential as a neuroprotective factor. VEGF is a key mediator of the angiogenic response to cerebral and peripheral ischaemia, and promotes nerve repair following traumatic spinal injury. Recent work has revealed a role for reduced VEGF expression in the pathogenesis of amyotrophic lateral sclerosis, a rare neurodegenerative disease caused by selective loss of motor neurons. In many instances, the neuroprotective effects of VEGF appear to result from a combination of the indirect consequences of increased angiogenesis, and the direct stimulation of neuronal function. However, more work is required to determine the specific functional role of direct neuronal effects of VEGF.
                Bookmark

                Author and article information

                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi Publishing Corporation
                2314-6133
                2314-6141
                2016
                22 September 2016
                : 2016
                : 6958752
                Affiliations
                1Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
                2Key Laboratory of Myopia, Ministry of Health, Fudan University, Shanghai, China
                3Department of Ophthalmology, People's Hospital of Peking University, Beijing, China
                Author notes

                Academic Editor: Janusz Blasiak

                Author information
                http://orcid.org/0000-0002-5372-1974
                Article
                10.1155/2016/6958752
                5055919
                27747237
                6cacb48d-e9fa-4812-8521-d6408b8db9d5
                Copyright © 2016 Qin Long et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 May 2016
                : 3 August 2016
                : 1 September 2016
                Funding
                Funded by: National Natural Science Foundation of China
                Award ID: 81070755
                Funded by: Fudan University
                Award ID: EENT-M-15-01
                Categories
                Research Article

                Comments

                Comment on this article