14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Application of deep learning in detecting neurological disorders from magnetic resonance images: a survey on the detection of Alzheimer’s disease, Parkinson’s disease and schizophrenia

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Neuroimaging, in particular magnetic resonance imaging (MRI), has been playing an important role in understanding brain functionalities and its disorders during the last couple of decades. These cutting-edge MRI scans, supported by high-performance computational tools and novel ML techniques, have opened up possibilities to unprecedentedly identify neurological disorders. However, similarities in disease phenotypes make it very difficult to detect such disorders accurately from the acquired neuroimaging data. This article critically examines and compares performances of the existing deep learning (DL)-based methods to detect neurological disorders—focusing on Alzheimer’s disease, Parkinson’s disease and schizophrenia—from MRI data acquired using different modalities including functional and structural MRI. The comparative performance analysis of various DL architectures across different disorders and imaging modalities suggests that the Convolutional Neural Network outperforms other methods in detecting neurological disorders. Towards the end, a number of current research challenges are indicated and some possible future research directions are provided.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead

          Black box machine learning models are currently being used for high stakes decision-making throughout society, causing problems throughout healthcare, criminal justice, and in other domains. People have hoped that creating methods for explaining these black box models will alleviate some of these problems, but trying to explain black box models, rather than creating models that are interpretable in the first place, is likely to perpetuate bad practices and can potentially cause catastrophic harm to society. There is a way forward - it is to design models that are inherently interpretable. This manuscript clarifies the chasm between explaining black boxes and using inherently interpretable models, outlines several key reasons why explainable black boxes should be avoided in high-stakes decisions, identifies challenges to interpretable machine learning, and provides several example applications where interpretable models could potentially replace black box models in criminal justice, healthcare, and computer vision.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methods to detect, characterize, and remove motion artifact in resting state fMRI.

            Head motion systematically alters correlations in resting state functional connectivity fMRI (RSFC). In this report we examine impact of motion on signal intensity and RSFC correlations. We find that motion-induced signal changes (1) are often complex and variable waveforms, (2) are often shared across nearly all brain voxels, and (3) often persist more than 10s after motion ceases. These signal changes, both during and after motion, increase observed RSFC correlations in a distance-dependent manner. Motion-related signal changes are not removed by a variety of motion-based regressors, but are effectively reduced by global signal regression. We link several measures of data quality to motion, changes in signal intensity, and changes in RSFC correlations. We demonstrate that improvements in data quality measures during processing may represent cosmetic improvements rather than true correction of the data. We demonstrate a within-subject, censoring-based artifact removal strategy based on volume censoring that reduces group differences due to motion to chance levels. We note conditions under which group-level regressions do and do not correct motion-related effects. © 2013 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Machine learning in mental health: a scoping review of methods and applications

              This paper aims to synthesise the literature on machine learning (ML) and big data applications for mental health, highlighting current research and applications in practice. We employed a scoping review methodology to rapidly map the field of ML in mental health. Eight health and information technology research databases were searched for papers covering this domain. Articles were assessed by two reviewers, and data were extracted on the article's mental health application, ML technique, data type, and study results. Articles were then synthesised via narrative review. Three hundred papers focusing on the application of ML to mental health were identified. Four main application domains emerged in the literature, including: (i) detection and diagnosis; (ii) prognosis, treatment and support; (iii) public health, and; (iv) research and clinical administration. The most common mental health conditions addressed included depression, schizophrenia, and Alzheimer's disease. ML techniques used included support vector machines, decision trees, neural networks, latent Dirichlet allocation, and clustering. Overall, the application of ML to mental health has demonstrated a range of benefits across the areas of diagnosis, treatment and support, research, and clinical administration. With the majority of studies identified focusing on the detection and diagnosis of mental health conditions, it is evident that there is significant room for the application of ML to other areas of psychology and mental health. The challenges of using ML techniques are discussed, as well as opportunities to improve and advance the field.
                Bookmark

                Author and article information

                Contributors
                mskaiser@juniv.edu
                mufti.mahmud@ntu.ac.uk , muftimahmud@gmail.com
                Journal
                Brain Inform
                Brain Inform
                Brain Informatics
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                2198-4018
                2198-4026
                9 October 2020
                9 October 2020
                December 2020
                : 7
                : 1
                : 11
                Affiliations
                [1 ]GRID grid.411808.4, ISNI 0000 0001 0664 5967, Institute of Information Technology, , Jahangirnagar University, ; Savar, 1342 Dhaka, Bangladesh
                [2 ]GRID grid.12361.37, ISNI 0000 0001 0727 0669, Department of Computing & Technology, , Nottingham Trent University, ; NG11 8NS Nottingham, UK
                Author information
                http://orcid.org/0000-0002-4604-5461
                Article
                112
                10.1186/s40708-020-00112-2
                7547060
                33034769
                6cbd94f3-1eac-4820-ad2c-fd2e908e5e82
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 24 March 2020
                : 17 September 2020
                Categories
                Review
                Custom metadata
                © The Author(s) 2020

                machine learning,alzheimer’s disease,parkinson’s disease,schizophrenia,neuroimaging

                Comments

                Comment on this article