4
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Normal Growth Spurt and Final Height despite Low Levels of All Forms of Circulating Insulin-Like Growth Factor-I in a Patient with Acid-Labile Subunit Deficiency

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: In a recently described patient with acid-labile subunit (ALS) deficiency, the inability to form ternary complexes resulted in a marked reduction in circulating total insulin-like growth factor (IGF)-I, whereas skeletal growth was only marginally affected. To further study the role of circulating versus locally produced IGF-I in skeletal growth in this patient, we now describe in detail growth changes and their relationship with several components of the circulating IGF system. Design and Methods: We followed growth and development up to the final height in a patient with complete ALS deficiency and determined both spontaneous and growth hormone (GH)-stimulated changes in the IGF system, including measurements of total, free and bioactive IGF-I, total IGF-II and insulin-like growth factor binding protein (IGFBP)-1, IGFBP-2 and IGFBP-3. Results: The patient had a delayed growth and pubertal onset. Six months of GH treatment had no effect on growth. At the age of 19.3 years, he spontaneously completed puberty and had a normal growth spurt for a late adolescent (peak height velocity of 8.4 cm/year). A normal final height was attained at 21.3 years (167.5 cm; –0.78 SDS). During as well as after puberty, basal levels of total, free and bioactive IGF-I were low, as were total IGF-II, IGFBP-1, IGFBP-2 and IGFBP-3. GH treatment for 6 months normalized free IGF-I and increased bioactive IGF-I, but had no effect on growth velocity. Conclusions: This case story shows that in the presence of complete ALS deficiency, a height within normal limits can be obtained despite low levels of all forms of circulating IGF-I. Furthermore, the patient presented a delayed but normal growth spurt without any marked increment of circulating IGF-I.

          Related collections

          Most cited references 27

          • Record: found
          • Abstract: found
          • Article: not found

          Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r).

          Newborn mice homozygous for a targeted disruption of insulin-like growth factor gene (Igf-1) exhibit a growth deficiency similar in severity to that previously observed in viable Igf-2 null mutants (60% of normal birthweight). Depending on genetic background, some of the Igf-1(-/-) dwarfs die shortly after birth, while others survive and reach adulthood. In contrast, null mutants for the Igf1r gene die invariably at birth of respiratory failure and exhibit a more severe growth deficiency (45% normal size). In addition to generalized organ hypoplasia in Igf1r(-/-) embryos, including the muscles, and developmental delays in ossification, deviations from normalcy were observed in the central nervous system and epidermis. Igf-1(-/-)/Igf1r(-/-) double mutants did not differ in phenotype from Igf1r(-/-) single mutants, while in Igf-2(-)/Igf1r(-/-) and Igf-1(-/-)/Igf-2(-) double mutants, which are phenotypically identical, the dwarfism was further exacerbated (30% normal size). The roles of the IGFs in mouse embryonic development, as revealed from the phenotypic differences between these mutants, are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Normal growth and development in the absence of hepatic insulin-like growth factor I.

            The somatomedin hypothesis proposed that insulin-like growth factor I (IGF-I) was a hepatically derived circulating mediator of growth hormone and is a crucial factor for postnatal growth and development. To reassess this hypothesis, we have used the Cre/loxP recombination system to delete the igf1 gene exclusively in the liver. igf1 gene deletion in the liver abrogated expression of igf1 mRNA and caused a dramatic reduction in circulating IGF-I levels. However, growth as determined by body weight, body length, and femoral length did not differ from wild-type littermates. Although our model proves that hepatic IGF-I is indeed the major contributor to circulating IGF-I levels in mice it challenges the concept that circulating IGF-I is crucial for normal postnatal growth. Rather, our model provides direct evidence for the importance of the autocrine/paracrine role of IGF-I.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Intrauterine growth retardation and postnatal growth failure associated with deletion of the insulin-like growth factor I gene.

                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                1663-2818
                1663-2826
                2007
                April 2007
                10 January 2007
                : 67
                : 5
                : 243-249
                Affiliations
                aEndocrinology Research Center (CEDIE), Division of Endocrinology, Ricardo Gutiérrez Children’s Hospital, and bDivision of Pediatrics, J.A. Fernández Hospital, Buenos Aires, Argentina; cMedical Research Laboratories, Clinical Institute and Medical Department M, and dDepartment of Pediatrics, Aarhus University Hospital, Aarhus, and eChildren’s Clinic, Randers, Denmark
                Article
                98479 Horm Res 2007;67:243–249
                10.1159/000098479
                17213728
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 3, Tables: 2, References: 41, Pages: 7
                Categories
                Original Paper

                Comments

                Comment on this article