2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Itaconate alleviates β2-microglobulin-induced cognitive impairment by enhancing the hippocampal amino-β-carboxymuconate-semialdehyde-decarboxylase/picolinic acid pathway

      , , , , , , ,
      Biochemical Pharmacology
      Elsevier BV

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          β2-microglobulin (B2M) has been established to impair cognitive function. However, no treatment is currently available for B2M-induced cognitive dysfunction. Itaconate is a tricarboxylic acid (TCA) cycle intermediate that exerts neuroprotective effects in several neurological diseases. The amino-β-carboxymuconate-semialdehyde-decarboxylase (ACMSD)/picolinic acid (PIC) pathway is a crucial neuroprotective branch in the kynurenine pathway (KP). The present study sought to investigate whether Itaconate attenuates B2M-induced cognitive impairment and examine the mediatory role of the hippocampal ACMSD/PIC pathway. We demonstrated that 4-Octyl Itaconate (OI, an itaconate derivative) significantly alleviated B2M-induced cognitive dysfunction and hippocampal neurogenesis impairment. OI treatment also increased the expression of ACMSD, elevated the concentration of PIC, and decreased the level of 3-HAA in the hippocampus of B2M-exposed rats. Furthermore, inhibition of ACMSD by TES-991 significantly abolished the protections of Itaconate against B2M-induced cognitive impairment and neurogenesis deficits. Exogenous PIC supplementation in hippocampus also improved cognitive performance and hippocampal neurogenesis in B2M-exposed rats. These findings demonstrated that Itaconate alleviates B2M-induced cognitive impairment by upregulation of the hippocampal ACMSD/PIC pathway. This is the first study to document Itaconate as a promising therapeutic agent to ameliorate cognitive impairment. Moreover, the mechanistic insights into the ACMSD/PIC pathway improve our understanding of it as a potential therapeutic target for neurological diseases beyond B2M-associated neurocognitive disorders.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanisms and functional implications of adult neurogenesis.

          The generation of new neurons is sustained throughout adulthood in the mammalian brain due to the proliferation and differentiation of adult neural stem cells. In this review, we discuss the factors that regulate proliferation and fate determination of adult neural stem cells and describe recent studies concerning the integration of newborn neurons into the existing neural circuitry. We further address the potential significance of adult neurogenesis in memory, depression, and neurodegenerative disorders such as Alzheimer's and Parkinson's disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1

            The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I

              Immune evasion is a major obstacle for cancer treatment. Common mechanisms include impaired antigen presentation through mutations or loss of heterozygosity (LOH) of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy 1–3 . However, in pancreatic ductal adenocarcinoma (PDAC), a malignancy refractory to most therapies including ICB 4 , mutations causing MHC-I loss are rarely found 5 despite the frequent downregulation of MHC-I expression 6–8 . Here we find that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation through an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced MHC-I cell surface expression and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, autophagy inhibition restores surface MHC-I levels, leading to improved antigen presentation, enhanced anti-tumour T cell response and reduced tumour growth in syngeneic hosts. Accordingly, anti-tumour effects of autophagy inhibition are reversed by depleting CD8+ T cells or reducing surface MHC-I expression. Autophagy inhibition, either genetically or pharmacologically with Chloroquine (CQ), synergizes with dual ICB (anti-PD1 and anti-CTLA4), and leads to an enhanced anti-tumour immune response. Our findings uncover a role for enhanced autophagy/lysosome function in immune evasion through selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB as a therapeutic strategy against PDAC.
                Bookmark

                Author and article information

                Journal
                Biochemical Pharmacology
                Biochemical Pharmacology
                Elsevier BV
                00062952
                August 2022
                August 2022
                : 202
                : 115137
                Article
                10.1016/j.bcp.2022.115137
                35700758
                6ced283a-da5c-44d1-9012-cc9e93528291
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article