66
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Succession of microbial consortia in the developing infant gut microbiome

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The colonization process of the infant gut microbiome has been called chaotic, but this view could reflect insufficient documentation of the factors affecting the microbiome. We performed a 2.5-y case study of the assembly of the human infant gut microbiome, to relate life events to microbiome composition and function. Sixty fecal samples were collected from a healthy infant along with a diary of diet and health status. Analysis of >300,000 16S rRNA genes indicated that the phylogenetic diversity of the microbiome increased gradually over time and that changes in community composition conformed to a smooth temporal gradient. In contrast, major taxonomic groups showed abrupt shifts in abundance corresponding to changes in diet or health. Community assembly was nonrandom: we observed discrete steps of bacterial succession punctuated by life events. Furthermore, analysis of ≈ 500,000 DNA metagenomic reads from 12 fecal samples revealed that the earliest microbiome was enriched in genes facilitating lactate utilization, and that functional genes involved in plant polysaccharide metabolism were present before the introduction of solid food, priming the infant gut for an adult diet. However, ingestion of table foods caused a sustained increase in the abundance of Bacteroidetes, elevated fecal short chain fatty acid levels, enrichment of genes associated with carbohydrate utilization, vitamin biosynthesis, and xenobiotic degradation, and a more stable community composition, all of which are characteristic of the adult microbiome. This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.

          We constructed error-correcting DNA barcodes that allow one run of a massively parallel pyrosequencer to process up to 1,544 samples simultaneously. Using these barcodes we processed bacterial 16S rRNA gene sequences representing microbial communities in 286 environmental samples, corrected 92% of sample assignment errors, and thus characterized nearly as many 16S rRNA genes as have been sequenced to date by Sanger sequencing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fast UniFrac: Facilitating high-throughput phylogenetic analyses of microbial communities including analysis of pyrosequencing and PhyloChip data

            Next-generation sequencing techniques, and PhyloChip, have made simultaneous phylogenetic analyses of hundreds of microbial communities possible. Insight into community structure has been limited by the inability to integrate and visualize such vast datasets. Fast UniFrac overcomes these issues, allowing integration of larger numbers of sequences and samples into a single analysis. Its new array-based implementation offers orders of magnitude improvements over the original version. New 3D visualization of principal coordinates analysis (PCoA) results, with the option to view multiple coordinate axes simultaneously, provides a powerful way to quickly identify patterns that relate vast numbers of microbial communities. We demonstrate the potential of Fast UniFrac using examples from three data types: Sanger-sequencing studies of diverse free-living and animal-associated bacterial assemblages and from the gut of obese humans as they diet, pyrosequencing data integrated from studies of the human hand and gut, and PhyloChip data from a study of citrus pathogens. We show that a Fast UniFrac analysis using a reference tree recaptures patterns that could not be detected without considering phylogenetic relationships and that Fast UniFrac, coupled with BLAST-based sequence assignment, can be used to quickly analyze pyrosequencing runs containing hundreds of thousands of sequences, revealing patterns relating human and gut samples. Finally, we show that the application of Fast UniFrac to PhyloChip data could identify well-defined subcategories associated with infection. Together, these case studies point the way towards a broad range of applications and demonstrate some of the new features of Fast UniFrac.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces.

              Weight loss diets for humans that are based on a high intake of protein but low intake of fermentable carbohydrate may alter microbial activity and bacterial populations in the large intestine and thus impact on gut health. In this study, 19 healthy, obese (body mass index range, 30 to 42) volunteers were given in succession three different diets: maintenance (M) for 3 days (399 g carbohydrate/day) and then high protein/medium (164 g/day) carbohydrate (HPMC) and high protein/low (24 g/day) carbohydrate (HPLC) each for 4 weeks. Stool samples were collected at the end of each dietary regimen. Total fecal short-chain fatty acids were 114 mM, 74 mM, and 56 mM (P < 0.001) for M, HPMC, and HPLC diets, respectively, and there was a disproportionate reduction in fecal butyrate (18 mM, 9 mM, and 4 mM, respectively; P < 0.001) with decreasing carbohydrate. Major groups of fecal bacteria were monitored using nine 16S rRNA-targeted fluorescence in situ hybridization probes, relative to counts obtained with the broad probe Eub338. No significant change was seen in the relative counts of the bacteroides (Bac303) (mean, 29.6%) or the clostridial cluster XIVa (Erec482, 23.3%), cluster IX (Prop853, 9.3%), or cluster IV (Fprau645, 11.6%; Rbro730 plus Rfla729, 9.3%) groups. In contrast, the Roseburia spp. and Eubacterium rectale subgroup of cluster XIVa (11%, 8%, and 3% for M, HPMC, and HPLC, respectively; P < 0.001) and bifidobacteria (4%, 2.1%, and 1.9%, respectively; P = 0.026) decreased as carbohydrate intake decreased. The abundance of butyrate-producing bacteria related to Roseburia spp. and E. rectale correlated well with the decline in fecal butyrate.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                March 15 2011
                March 15 2011
                July 28 2010
                March 15 2011
                : 108
                : Supplement_1
                : 4578-4585
                Article
                10.1073/pnas.1000081107
                3063592
                20668239
                6cf3b62c-c353-4ee1-91bd-929bd6acb6d2
                © 2011
                History

                Comments

                Comment on this article