Blog
About

215
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Reconfigurable topological photonic crystal

      , , ,

      New Journal of Physics

      IOP Publishing

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references 57

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Experimental Observation of Quantum Hall Effect and Berry's Phase in Graphene

          When electrons are confined in two-dimensional (2D) materials, quantum mechanically enhanced transport phenomena, as exemplified by the quantum Hall effects (QHE), can be observed. Graphene, an isolated single atomic layer of graphite, is an ideal realization of such a 2D system. Here, we report an experimental investigation of magneto transport in a high mobility single layer of graphene. Adjusting the chemical potential using the electric field effect, we observe an unusual half integer QHE for both electron and hole carriers in graphene. Vanishing effective carrier masses is observed at Dirac point in the temperature dependent Shubnikov de Haas oscillations, which probe the 'relativistic' Dirac particle-like dispersion. The relevance of Berry's phase to these experiments is confirmed by the phase shift of magneto-oscillations, related to the exceptional topology of the graphene band structure.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The birth of topological insulators.

               Joel Moore (2010)
              Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in spintronics and quantum computing.
                Bookmark

                Author and article information

                Journal
                New Journal of Physics
                New J. Phys.
                IOP Publishing
                1367-2630
                February 01 2018
                February 16 2018
                : 20
                : 2
                : 023040
                Article
                10.1088/1367-2630/aaac04
                © 2018

                Comments

                Comment on this article