41
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Association between ambient temperature and COVID-19 infection in 122 cities from China

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Coronavirus disease 2019 (COVID-19) has become a severe public health problem globally. Both epidemiological and laboratory studies have shown that ambient temperature could affect the transmission and survival of coronaviruses. This study aimed to determine whether the temperature is an essential factor in the infection caused by this novel coronavirus.

          Methods

          Daily confirmed cases and meteorological factors in 122 cities were collected between January 23, 2020, to February 29, 2020. A generalized additive model (GAM) was applied to explore the nonlinear relationship between mean temperature and COVID-19 confirmed cases. We also used a piecewise linear regression to determine the relationship in detail.

          Results

          The exposure-response curves suggested that the relationship between mean temperature and COVID-19 confirmed cases was approximately linear in the range of <3 °C and became flat above 3 °C. When mean temperature (lag0–14) was below 3 °C, each 1 °C rise was associated with a 4.861% (95% CI: 3.209–6.513) increase in the daily number of COVID-19 confirmed cases. These findings were robust in our sensitivity analyses.

          Conclusions

          Our results indicate that mean temperature has a positive linear relationship with the number of COVID-19 cases with a threshold of 3 °C. There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer, which provides useful implications for policymakers and the public.

          Graphical abstract

          Highlights

          • Mean temperature of last two weeks (when < 3 °C) was positively associated with newly confirmed COVID-19 cases.

          • 1 °C rise in the mean temperature of last weeks (when < 3 °C) was associated with a 4.861% increase in the daily confirmed cases.

          • There is no evidence supporting that case counts of COVID-19 could decline when the weather becomes warmer.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China

          Summary Background A recent cluster of pneumonia cases in Wuhan, China, was caused by a novel betacoronavirus, the 2019 novel coronavirus (2019-nCoV). We report the epidemiological, clinical, laboratory, and radiological characteristics and treatment and clinical outcomes of these patients. Methods All patients with suspected 2019-nCoV were admitted to a designated hospital in Wuhan. We prospectively collected and analysed data on patients with laboratory-confirmed 2019-nCoV infection by real-time RT-PCR and next-generation sequencing. Data were obtained with standardised data collection forms shared by WHO and the International Severe Acute Respiratory and Emerging Infection Consortium from electronic medical records. Researchers also directly communicated with patients or their families to ascertain epidemiological and symptom data. Outcomes were also compared between patients who had been admitted to the intensive care unit (ICU) and those who had not. Findings By Jan 2, 2020, 41 admitted hospital patients had been identified as having laboratory-confirmed 2019-nCoV infection. Most of the infected patients were men (30 [73%] of 41); less than half had underlying diseases (13 [32%]), including diabetes (eight [20%]), hypertension (six [15%]), and cardiovascular disease (six [15%]). Median age was 49·0 years (IQR 41·0–58·0). 27 (66%) of 41 patients had been exposed to Huanan seafood market. One family cluster was found. Common symptoms at onset of illness were fever (40 [98%] of 41 patients), cough (31 [76%]), and myalgia or fatigue (18 [44%]); less common symptoms were sputum production (11 [28%] of 39), headache (three [8%] of 38), haemoptysis (two [5%] of 39), and diarrhoea (one [3%] of 38). Dyspnoea developed in 22 (55%) of 40 patients (median time from illness onset to dyspnoea 8·0 days [IQR 5·0–13·0]). 26 (63%) of 41 patients had lymphopenia. All 41 patients had pneumonia with abnormal findings on chest CT. Complications included acute respiratory distress syndrome (12 [29%]), RNAaemia (six [15%]), acute cardiac injury (five [12%]) and secondary infection (four [10%]). 13 (32%) patients were admitted to an ICU and six (15%) died. Compared with non-ICU patients, ICU patients had higher plasma levels of IL2, IL7, IL10, GSCF, IP10, MCP1, MIP1A, and TNFα. Interpretation The 2019-nCoV infection caused clusters of severe respiratory illness similar to severe acute respiratory syndrome coronavirus and was associated with ICU admission and high mortality. Major gaps in our knowledge of the origin, epidemiology, duration of human transmission, and clinical spectrum of disease need fulfilment by future studies. Funding Ministry of Science and Technology, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, and Beijing Municipal Science and Technology Commission.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China

            In December 2019, novel coronavirus (2019-nCoV)-infected pneumonia (NCIP) occurred in Wuhan, China. The number of cases has increased rapidly but information on the clinical characteristics of affected patients is limited.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia

              Abstract Background The initial cases of novel coronavirus (2019-nCoV)–infected pneumonia (NCIP) occurred in Wuhan, Hubei Province, China, in December 2019 and January 2020. We analyzed data on the first 425 confirmed cases in Wuhan to determine the epidemiologic characteristics of NCIP. Methods We collected information on demographic characteristics, exposure history, and illness timelines of laboratory-confirmed cases of NCIP that had been reported by January 22, 2020. We described characteristics of the cases and estimated the key epidemiologic time-delay distributions. In the early period of exponential growth, we estimated the epidemic doubling time and the basic reproductive number. Results Among the first 425 patients with confirmed NCIP, the median age was 59 years and 56% were male. The majority of cases (55%) with onset before January 1, 2020, were linked to the Huanan Seafood Wholesale Market, as compared with 8.6% of the subsequent cases. The mean incubation period was 5.2 days (95% confidence interval [CI], 4.1 to 7.0), with the 95th percentile of the distribution at 12.5 days. In its early stages, the epidemic doubled in size every 7.4 days. With a mean serial interval of 7.5 days (95% CI, 5.3 to 19), the basic reproductive number was estimated to be 2.2 (95% CI, 1.4 to 3.9). Conclusions On the basis of this information, there is evidence that human-to-human transmission has occurred among close contacts since the middle of December 2019. Considerable efforts to reduce transmission will be required to control outbreaks if similar dynamics apply elsewhere. Measures to prevent or reduce transmission should be implemented in populations at risk. (Funded by the Ministry of Science and Technology of China and others.)
                Bookmark

                Author and article information

                Contributors
                Journal
                Sci Total Environ
                Sci. Total Environ
                The Science of the Total Environment
                Elsevier B.V.
                0048-9697
                1879-1026
                30 March 2020
                1 July 2020
                30 March 2020
                : 724
                : 138201
                Affiliations
                [a ]The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
                [b ]Brunel Business School, Brunel University London, Uxbridge, United Kingdom
                [c ]School of Management, University of Science and Technology of China, Hefei, China
                Author notes
                [* ]Corresponding author. ustczyj@ 123456mail.ustc.edu.cn
                Article
                S0048-9697(20)31714-9 138201
                10.1016/j.scitotenv.2020.138201
                7142675
                32408450
                6d103f57-0baf-4219-82b2-aefb971ec72e
                © 2020 Elsevier B.V. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                : 23 March 2020
                : 23 March 2020
                Categories
                Article

                General environmental science
                temperature,novel coronavirus pneumonia,covid-19,china,generalized additive model

                Comments

                Comment on this article