38
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Repo-Man recruits PP1γ to chromatin and is essential for cell viability

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Protein phosphatase 1 (PP1) is a ubiquitous serine/threonine phosphatase regulating many cellular processes. PP1α and -γ are closely related isoforms with distinct localization patterns, shown here by time-lapse microscopy of stably expressed fluorescent protein fusions. A pool of PP1γ is selectively loaded onto chromatin at anaphase. Using stable isotope labeling and proteomics, we identified a novel PP1 binding protein, Repo-Man, which selectively recruits PP1γ onto mitotic chromatin at anaphase and into the following interphase. This approach revealed both novel and known PP1 binding proteins, quantitating their relative distribution between PP1α and -γ in vivo. When overexpressed, Repo-Man can also recruit PP1α to chromatin. Mutating Repo-Man's PP1 binding domain does not disrupt chromatin binding but abolishes recruitment of PP1 onto chromatin. RNA interference–induced knockdown of Repo-Man caused large-scale cell death by apoptosis, as did overexpression of this dominant-negative mutant. The data indicate that Repo-Man forms an essential complex with PP1γ and is required for the recruitment of PP1 to chromatin.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Directed proteomic analysis of the human nucleolus.

          The nucleolus is a subnuclear organelle containing the ribosomal RNA gene clusters and ribosome biogenesis factors. Recent studies suggest it may also have roles in RNA transport, RNA modification, and cell cycle regulation. Despite over 150 years of research into nucleoli, many aspects of their structure and function remain uncharacterized. We report a proteomic analysis of human nucleoli. Using a combination of mass spectrometry (MS) and sequence database searches, including online analysis of the draft human genome sequence, 271 proteins were identified. Over 30% of the nucleolar proteins were encoded by novel or uncharacterized genes, while the known proteins included several unexpected factors with no previously known nucleolar functions. MS analysis of nucleoli isolated from HeLa cells in which transcription had been inhibited showed that a subset of proteins was enriched. These data highlight the dynamic nature of the nucleolar proteome and show that proteins can either associate with nucleoli transiently or accumulate only under specific metabolic conditions. This extensive proteomic analysis shows that nucleoli have a surprisingly large protein complexity. The many novel factors and separate classes of proteins identified support the view that the nucleolus may perform additional functions beyond its known role in ribosome subunit biogenesis. The data also show that the protein composition of nucleoli is not static and can alter significantly in response to the metabolic state of the cell.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Protein phosphatase 1--targeted in many directions.

            Protein phosphatase 1 (PP1) is a major eukaryotic protein serine/threonine phosphatase that regulates an enormous variety of cellular functions through the interaction of its catalytic subunit (PP1c) with over fifty different established or putative regulatory subunits. Most of these target PP1c to specific subcellular locations and interact with a small hydrophobic groove on the surface of PP1c through a short conserved binding motif--the RVxF motif--which is often preceded by further basic residues. Weaker interactions may subsequently enhance binding and modulate PP1 activity/specificity in a variety of ways. Several putative targeting subunits do not possess an RVxF motif but nevertheless interact with the same region of PP1c. In addition, several 'modulator' proteins bind to PP1c but do not possess a domain targeting them to a specific location. Most are potent inhibitors of PP1c and possess at least two sites for interaction with PP1c, one of which is identical or similar to the RVxF motif. Regulation of PP1c in response to extracellular and intracellular signals occurs mostly through changes in the levels, conformation or phosphorylation status of targeting subunits. Understanding of the mode of action of PP1c complexes may facilitate development of drugs that target particular PP1c complexes and thereby modulate the phosphorylation state of a very limited subset of proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Functional diversity of protein phosphatase-1, a cellular economizer and reset button.

              The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
                Bookmark

                Author and article information

                Journal
                J Cell Biol
                JCB
                The Journal of Cell Biology
                The Rockefeller University Press
                0021-9525
                1540-8140
                27 February 2006
                : 172
                : 5
                : 679-692
                Affiliations
                [1 ]University of Dundee, Dundee DD1 5EH, Scotland, UK
                [2 ]University of Southern Denmark, Odense Campusvej 55, DS-5230 Odense M, Denmark
                [3 ]University of Calgary, Calgary, Alberta, Canada T2N 1N4
                Author notes

                Correspondence to Laura Trinkle-Mulcahy: l.trinklemulcahy@ 123456dundee.ac.uk

                Article
                200508154
                10.1083/jcb.200508154
                2063701
                16492807
                6d12d6ea-3a62-40c3-bb13-0f2542a9b531
                Copyright © 2006, The Rockefeller University Press
                History
                : 23 August 2005
                : 17 January 2006
                Categories
                Research Articles
                Article

                Cell biology
                Cell biology

                Comments

                Comment on this article