10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TNF Blockade Maintains an IL-10 + Phenotype in Human Effector CD4 + and CD8 + T Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CD4 + and CD8 + effector T cell subpopulations can display regulatory potential characterized by expression of the prototypically anti-inflammatory cytokine IL-10. However, the underlying cellular mechanisms that regulate expression of IL-10 in different T cell subpopulations are not yet fully elucidated. We recently showed that TNF inhibitors (TNFi) promote IL-10 expression in human CD4 + T cells, including IL-17 + CD4 + T cells. Here, we further characterized the regulation of IL-10 expression via blockade of TNF signaling or other cytokine/co-stimulatory pathways, in human T cell subpopulations. Addition of the TNFi drug adalimumab to anti-CD3-stimulated human CD4 + T cell/monocyte cocultures led to increased percentages of IL-10 + cells in pro-inflammatory IL-17 +, IFNγ +, TNFα +, GM-CSF +, and IL-4 + CD4 + T cell subpopulations. Conversely, exogenous TNFα strongly decreased IL-10 + cell frequencies. TNF blockade also regulated IL-10 expression in CD4 + T cells upon antigenic stimulation. Using time course experiments in whole peripheral blood mononuclear cell (PBMC) cultures, we show that TNF blockade maintained, rather than increased, IL-10 + cell frequencies in both CD4 + and CD8 + T cells following in vitro stimulation in a dose- and time-dependent manner. Blockade of IL-17, IFNγ, IL-6R, or CD80/CD86-mediated co-stimulation did not significantly regulate IL-10 expression within CD4 + or CD8 + T cell subpopulations. We show that TNF blockade acts directly on effector CD4 + T cells, in the absence of monocytes or CD4 + CD25 highCD127 low regulatory T cells and independently of IL-27, resulting in higher IL-10 + frequencies after 3 days in culture. IL-10/IL-10R blockade reduced the frequency of IL-10-expressing cells both in the presence and absence of TNF blockade. Addition of recombinant IL-10 alone was insufficient to drive an increase in IL-10 + CD4 + T cell frequencies in 3-day CD4 + T cell/monocyte cocultures, but resulted in increased IL-10 expression at later time points in whole PBMC cultures. Together, these data provide additional insights into the regulation of IL-10 expression in human T cells by TNF blockade. The maintenance of an IL-10 + phenotype across a broad range of effector T cell subsets may represent an underappreciated mechanism of action underlying this widely used therapeutic strategy.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Th17 and regulatory T cell balance in autoimmune and inflammatory diseases.

          This review focuses on the biology of T helper 17 (Th17) and regulatory T (Treg) cells and their role in inflammatory diseases, such as rheumatoid arthritis. Th17 cells represent a pro-inflammatory subset whereas Treg cells have an antagonist effect. Their developmental pathways are reciprocally interconnected and there is an important plasticity between Th17 and Treg cells. These features implicate that the Th17/Treg balance plays a major role in the development and the disease outcomes of animal model and human autoimmune/inflammatory diseases. During these diseases, this balance is disturbed and this promotes the maintenance of inflammation. Targeting the Th17/Treg imbalance can be performed at different levels such as inhibition of pro-inflammatory cytokines and their receptors, of pathogenic cells or their specific signaling pathways. Conversely, direct effects include administration or induction of protective cells, or stimulation of their specific pathways. Several clinical trials are underway and some positive results have been obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            T cells in multiple sclerosis and experimental autoimmune encephalomyelitis.

            Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS), which involves autoimmune responses to myelin antigens. Studies in experimental autoimmune encephalomyelitis (EAE), an animal model for MS, have provided convincing evidence that T cells specific for self-antigens mediate pathology in these diseases. Until recently, T helper type 1 (Th1) cells were thought to be the main effector T cells responsible for the autoimmune inflammation. However more recent studies have highlighted an important pathogenic role for CD4(+) T cells that secrete interleukin (IL)-17, termed Th17, but also IL-17-secreting γδ T cells in EAE as well as other autoimmune and chronic inflammatory conditions. This has prompted intensive study of the induction, function and regulation of IL-17-producing T cells in MS and EAE. In this paper, we review the contribution of Th1, Th17, γδ, CD8(+) and regulatory T cells as well as the possible development of new therapeutic approaches for MS based on manipulating these T cell subtypes. © 2010 The Authors. Clinical and Experimental Immunology © 2010 British Society for Immunology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Compromised Function of Regulatory T Cells in Rheumatoid Arthritis and Reversal by Anti-TNFα Therapy

              Regulatory T cells have been clearly implicated in the control of disease in murine models of autoimmunity. The paucity of data regarding the role of these lymphocytes in human autoimmune disease has prompted us to examine their function in patients with rheumatoid arthritis (RA). Regulatory (CD4+CD25+) T cells isolated from patients with active RA displayed an anergic phenotype upon stimulation with anti-CD3 and anti-CD28 antibodies, and suppressed the proliferation of effector T cells in vitro. However, they were unable to suppress proinflammatory cytokine secretion from activated T cells and monocytes, or to convey a suppressive phenotype to effector CD4+CD25− T cells. Treatment with antitumor necrosis factor α (TNFα; Infliximab) restored the capacity of regulatory T cells to inhibit cytokine production and to convey a suppressive phenotype to “conventional” T cells. Furthermore, anti-TNFα treatment led to a significant rise in the number of peripheral blood regulatory T cells in RA patients responding to this treatment, which correlated with a reduction in C reactive protein. These data are the first to demonstrate that regulatory T cells are functionally compromised in RA, and indicate that modulation of regulatory T cells by anti-TNFα therapy may be a further mechanism by which this disease is ameliorated.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                15 February 2017
                2017
                : 8
                : 157
                Affiliations
                [1] 1Division of Immunology, Infection and Inflammatory Disease (DIIID), Centre for Inflammation Biology and Cancer Immunology (CIBCI), King’s College London , London, UK
                Author notes

                Edited by: Lucienne Chatenoud, Paris Descartes University, France

                Reviewed by: Lennart T. Mars, Institut national de la santé et de la recherche médicale, France; Abdelhadi Saoudi, Institut national de la santé et de la recherche médicale, France

                *Correspondence: Leonie S. Taams, leonie.taams@ 123456kcl.ac.uk

                Present address: Hayley G. Evans, Nuffield Department of Clinical Neurosciences, The Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK

                Specialty section: This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2017.00157
                5309392
                28261215
                6d1dff3b-a6ef-4159-9c60-7d5ab1b68a9b
                Copyright © 2017 Roberts, Durham, Fleskens, Evans and Taams.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 26 September 2016
                : 30 January 2017
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 53, Pages: 14, Words: 8125
                Funding
                Funded by: Guy’s and St. Thomas’ Charity 10.13039/501100000380
                Funded by: National Institute for Health Research 10.13039/501100000272
                Categories
                Immunology
                Original Research

                Immunology
                tumor necrosis factor,anti-tnf,tnf inhibitors,adalimumab,interleukin-10,cd4+ t cell polarization,cd8+ t cell polarization,il-10 regulation

                Comments

                Comment on this article