20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Antioxidant activity of 3,4-DHPEA-EA and protocatechuic acid: a comparative assessment with other olive oil biophenols.

      Redox Report
      Antioxidants, isolation & purification, pharmacology, Arachidonic Acid, analysis, Cholesterol, Fatty Acids, Humans, Hydroxybenzoates, Linoleic Acid, Lipid Peroxides, Lipoproteins, LDL, blood, drug effects, Phenols, Plant Oils, chemistry, Pyrans

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Olive oil contains several phenolic compounds with antioxidant activity, whose levels depend strongly on the kind of cultivar grown, fruit ripening effects and the oil extraction process. Therefore, the beneficial effects exerted by olive oil consumption on the resistance of low density lipoproteins (LDLs) to oxidation depend not only on an increased intake of mono-unsaturated fatty acids (e.g. oleate) which are less prone to oxidation, but also phenolic antioxidants. The aim of this study was to analyze in vitro effects exerted on the oxidative modification of Cu-stimulated human LDL by two olive oil biophenols, i.e. 3,4-dihydroxyphenylethanol-elenolic acid (3,4-DHPEA-EA) and protocatecuic acid. These compounds have not been investigated in as much detail as the better-known olive oil biophenols - such as tyrosol (p-HPEA), o-coumaric acid, vanillic acid, caffeic acid, oleuropein and 3,4-dihydroxyphenylethanol (3,4-DHPEA). Modification of LDL was tested by measuring the formation of intermediate and end products of lipid peroxidation such as conjugated dienes, lipid hydroperoxides, cholesterol and cholesteryl ester oxides, as well as studying the decrease in oxidizable substrates like polyunsaturated fatty acids. In addition, the increase in LDL negative charges was evaluated. The results demonstrate the two-tested olive oil biophenols show high antioxidant activities. In particular, protocatecuic acid and 3,4-DHPEA-EA show an antioxidant activity comparable with that of caffeic acid, oleuropein and 3,4-DHPEA. They are not only able to retard lipid peroxidation, but also to reduce the extent of its activity.

          Related collections

          Author and article information

          Comments

          Comment on this article