11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Formulation, characterization, optimization, and in-vivo performance of febuxostat self-nano-emulsifying system loaded sublingual films

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Febuxostat (FXS) is a potent antigout drug with poor water solubility and relative high first-pass effect leading to moderate oral bioavailability (<49%). This study aimed to increase FXS solubility and bioavailability by optimizing sublingual fast-dissolving films (SFs) containing a selected FXS self-nano-emulsifying system (s-SNES) previously prepared by our team. The s-SNES was loaded into SFs by solvent casting technique. A full factorial design (3 2) was applied to study the effects of polymer and plasticizer types on mechanical characteristics and the dissolution profile of FXS from the SFs. Numerical optimization was performed to select the SF having highest desirability according to predetermined characteristics. The optimized SF (O-SF) contained 1 g of s-SNES, polyvinylpyrrolidone K30 (6%w/v), polyethylene glycol 300 (20%w/w of polymer wt.), and Avicel PH101 (0.5%w/v). O-SF showed good permeation of FXS through sheep sublingual tissue. Storage of O-SF for three months showed no significant change in the FXS dissolution profile. In-vivo performance of O-SF in rabbits was compared to that of oral marketed tablets (Staturic ® 80 mg). A cross-over design was applied and pharmacokinetic parameters were calculated after ensuring absence of sequence effect. Statistical analysis revealed better performance for O-SF with significantly higher C max, AUC 0–24, AUC 0–∞, apparent t 1/2 together with lower t max, and apparent k el than marketed tablets. Relative bioavailability of O-SF compared to the marketed tablet was found to be 240.6%. This confirms the achievement of the study aims of improving dissolution rate and bioavailability of FXS using a patient-wise convenient formula.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: found
          • Article: not found

          Modeling and comparison of dissolution profiles.

          Over recent years, drug release/dissolution from solid pharmaceutical dosage forms has been the subject of intense and profitable scientific developments. Whenever a new solid dosage form is developed or produced, it is necessary to ensure that drug dissolution occurs in an appropriate manner. The pharmaceutical industry and the registration authorities do focus, nowadays, on drug dissolution studies. The quantitative analysis of the values obtained in dissolution/release tests is easier when mathematical formulas that express the dissolution results as a function of some of the dosage forms characteristics are used. In some cases, these mathematic models are derived from the theoretical analysis of the occurring process. In most of the cases the theoretical concept does not exist and some empirical equations have proved to be more appropriate. Drug dissolution from solid dosage forms has been described by kinetic models in which the dissolved amount of drug (Q) is a function of the test time, t or Q=f(t). Some analytical definitions of the Q(t) function are commonly used, such as zero order, first order, Hixson-Crowell, Weibull, Higuchi, Baker-Lonsdale, Korsmeyer-Peppas and Hopfenberg models. Other release parameters, such as dissolution time (tx%), assay time (tx min), dissolution efficacy (ED), difference factor (f1), similarity factor (f2) and Rescigno index (xi1 and xi2) can be used to characterize drug dissolution/release profiles.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            THE TWO-PERIOD CHANGE-OVER DESIGN AN ITS USE IN CLINICAL TRIALS.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Formulation of lipid-based delivery systems for oral administration: materials, methods and strategies.

              Oral lipid-based drug delivery systems may include a broad range of oils, surfactants, and cosolvents. This diversity makes comparison of lipid-based formulations difficult. Although the relationship between formulation and drug absorption is understood at a conceptual level, performance in vivo cannot be predicted with confidence at present. The Lipid Formulation Classification System (LFCS) identifies the factors which are likely to affect performance in vivo. There is now a need to establish performance criteria which will facilitate in vitro-in vivo correlation studies. In this review we discuss the properties of excipients, and identify criteria for selection of excipients for lipid-based formulations. Excipients are discussed in the context of the LFCS, our existing knowledge of the fate of these materials during dispersion and digestion, and the likely consequences of their use in formulations. We outline the formulation strategies that can be used for each type of lipid formulation, and suggest a framework for the in vitro testing of each type. Finally we address the choice of lipid formulations in relation to the physicochemical properties of the drug.
                Bookmark

                Author and article information

                Journal
                Drug Deliv
                Drug Deliv
                Drug Delivery
                Taylor & Francis
                1071-7544
                1521-0464
                26 June 2021
                2021
                : 28
                : 1
                : 1321-1333
                Affiliations
                [a ]Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University , Cairo, Egypt
                [b ]Department of Pharmaceutics, National Organization for Drug Control and Research (NODCAR) , Giza, Egypt
                Author notes
                CONTACT Basant A. Habib basant.habib@ 123456pharma.cu.edu.eg Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University , Kasr El Einy St. 11562Cairo, Egypt
                Author information
                https://orcid.org/0000-0001-5083-3009
                Article
                1927247
                10.1080/10717544.2021.1927247
                8260042
                34176376
                6d271bcd-5c69-416a-bfa8-4bc150b89a68
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 4, Tables: 2, Pages: 13, Words: 10353
                Categories
                Research Article
                Research Article

                Pharmacology & Pharmaceutical medicine
                febuxostat self-nano-emulsions,sublingual films,patient-wise convenient formula,full factorial design,sequence effect in cross over data

                Comments

                Comment on this article