36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Selection of Reliable Reference Genes for Gene Expression Studies in the Biofuel Plant Jatropha curcas Using Real-Time Quantitative PCR

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Jatropha curcas is a promising renewable feedstock for biodiesel and bio-jet fuel production. To study gene expression in Jatropha in different tissues throughout development and under stress conditions, we examined a total of 11 typical candidate reference genes using real-time quantitative polymerase chain reaction (RT-qPCR) analysis, which is widely used for validating transcript levels in gene expression studies. The expression stability of these candidate reference genes was assessed across a total of 20 samples, including various tissues at vegetative and reproductive stages and under desiccation and cold stress treatments. The results obtained using software qBase PLUS showed that the top-ranked reference genes differed across the sample subsets. The combination of actin, GAPDH, and EF1α would be appropriate as a reference panel for normalizing gene expression data across samples at different developmental stages; the combination of actin, GAPDH, and TUB5 should be used as a reference panel for normalizing gene expression data across samples under various abiotic stress treatments. With regard to different developmental stages, we recommend the use of actin and TUB8 for normalization at the vegetative stage and GAPDH and EF1α for normalization at the reproductive stage. For abiotic stress treatments, we recommend the use of TUB5 and TUB8 for normalization under desiccation stress and GAPDH and actin for normalization under cold stress. These results are valuable for future research on gene expression during development or under abiotic stress in Jatropha. To our knowledge, this is the first report on the stability of reference genes in Jatropha.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis.

          Plant growth is greatly affected by drought and low temperature. Expression of a number of genes is induced by both drought and low temperature, although these stresses are quite different. Previous experiments have established that a cis-acting element named DRE (for dehydration-responsive element) plays an important role in both dehydration- and low-temperature-induced gene expression in Arabidopsis. Two cDNA clones that encode DRE binding proteins, DREB1A and DREB2A, were isolated by using the yeast one-hybrid screening technique. The two cDNA libraries were prepared from dehydrated and cold-treated rosette plants, respectively. The deduced amino acid sequences of DREB1A and DREB2A showed no significant sequence similarity, except in the conserved DNA binding domains found in the EREBP and APETALA2 proteins that function in ethylene-responsive expression and floral morphogenesis, respectively. Both the DREB1A and DREB2A proteins specifically bound to the DRE sequence in vitro and activated the transcription of the b-glucuronidase reporter gene driven by the DRE sequence in Arabidopsis leaf protoplasts. Expression of the DREB1A gene and its two homologs was induced by low-temperature stress, whereas expression of the DREB2A gene and its single homolog was induced by dehydration. Overexpression of the DREB1A cDNA in transgenic Arabidopsis plants not only induced strong expression of the target genes under unstressed conditions but also caused dwarfed phenotypes in the transgenic plants. These transgenic plants also revealed freezing and dehydration tolerance. In contrast, overexpression of the DREB2A cDNA induced weak expression of the target genes under unstressed conditions and caused growth retardation of the transgenic plants. These results indicate that two independent families of DREB proteins, DREB1 and DREB2, function as trans-acting factors in two separate signal transduction pathways under low-temperature and dehydration conditions, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effect of experimental treatment on housekeeping gene expression: validation by real-time, quantitative RT-PCR.

            The effects of serum on the expression of four commonly used housekeeping genes were examined in serum-stimulated fibroblasts in order to validate the internal control genes for a quantitative RT-PCR assay. NIH 3T3 fibroblasts transfected with an inducible chimeric gene were serum-starved for 24 h and then induced with 15% serum for 8 h. Serum did not alter the amount of total RNA that was expressed in the cells, however, the amount of mRNA significantly increased over time with serum-stimulation. Both messenger and total RNA from each of the time points were reverse transcribed under two different conditions; one in which the reactions were normalized to contain equal amounts of RNA and another series of reactions that were not normalized to RNA content. The resulting cDNA was amplified by real-time, quantitative PCR using gene-specific primers for beta-actin, beta-2 microglobulin, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and 18S ribosomal RNA. The expression of beta-actin and GAPDH increased up to nine- and three-fold, respectively, under all conditions of reverse transcription (P 0.05). The expression of beta-2 microglobulin increased up to two-fold when assayed from cDNA synthesized from non-normalized mRNA, but was unaffected by serum when the reverse transcriptions were normalized to mRNA. beta-2 Microglobulin expression was found to be directly proportional to the amount of mRNA that was present in non-normalized reverse transcription reactions. Thus, beta-2 microglobulin and 18S rRNA are suitable internal control genes in quantitative serum-stimulation studies, while beta-actin and GAPDH are not. The internal control gene needs to be properly validated when designing quantitative gene expression studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Selection of internal control genes for quantitative real-time RT-PCR studies during tomato development process

              Background The elucidation of gene expression patterns leads to a better understanding of biological processes. Real-time quantitative RT-PCR has become the standard method for in-depth studies of gene expression. A biologically meaningful reporting of target mRNA quantities requires accurate and reliable normalization in order to identify real gene-specific variation. The purpose of normalization is to control several variables such as different amounts and quality of starting material, variable enzymatic efficiencies of retrotranscription from RNA to cDNA, or differences between tissues or cells in overall transcriptional activity. The validity of a housekeeping gene as endogenous control relies on the stability of its expression level across the sample panel being analysed. In the present report we describe the first systematic evaluation of potential internal controls during tomato development process to identify which are the most reliable for transcript quantification by real-time RT-PCR. Results In this study, we assess the expression stability of 7 traditional and 4 novel housekeeping genes in a set of 27 samples representing different tissues and organs of tomato plants at different developmental stages. First, we designed, tested and optimized amplification primers for real-time RT-PCR. Then, expression data from each candidate gene were evaluated with three complementary approaches based on different statistical procedures. Our analysis suggests that SGN-U314153 (CAC), SGN-U321250 (TIP41), SGN-U346908 ("Expressed") and SGN-U316474 (SAND) genes provide superior transcript normalization in tomato development studies. We recommend different combinations of these exceptionally stable housekeeping genes for suited normalization of different developmental series, including the complete tomato development process. Conclusion This work constitutes the first effort for the selection of optimal endogenous controls for quantitative real-time RT-PCR studies of gene expression during tomato development process. From our study a tool-kit of control genes emerges that outperform the traditional genes in terms of expression stability.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                Molecular Diversity Preservation International (MDPI)
                1422-0067
                December 2013
                13 December 2013
                : 14
                : 12
                : 24338-24354
                Affiliations
                [1 ]Key Laboratory of Tropical Plant Resource and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, Yunnan, China; E-Mails: zhanglu@ 123456xtbg.ac.cn (L.Z.); liangl.he08@ 123456gmail.com (L.-L.H.); qtfu.xtbg@ 123456gmail.com (Q.-T.F.)
                [2 ]University of Chinese Academy of Sciences, Beijing 100049, China
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: zfxu@ 123456xtbg.ac.cn ; Tel.: +86-691-871-3051; Fax: +86-691-871-5070.
                Article
                ijms-14-24338
                10.3390/ijms141224338
                3876114
                24351820
                6d29752c-6eb2-4614-8641-5010b326d39b
                © 2013 by the authors; licensee MDPI, Basel, Switzerland

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 04 November 2013
                : 27 November 2013
                : 05 December 2013
                Categories
                Article

                Molecular biology
                reference gene,rt-qpcr,developmental stage,physic nut,abiotic stress,biofuels
                Molecular biology
                reference gene, rt-qpcr, developmental stage, physic nut, abiotic stress, biofuels

                Comments

                Comment on this article